Synlett 2023; 34(14): 1639-1654
DOI: 10.1055/s-0042-1751425
account

Our Voyage from Catalytic Cross-Hydroalkenylation to Transfer-Dehydroaromatization of Cyclic π-Systems: Reactivity and Selectivity Changes Enabled by NHC-Ni and NHC-Pd Hydride Equivalents

Yang Chen
a   Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. of China
b   Shenzhen Grubbs Institute, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. of China
c   Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. of China
,
Weihao Chen
a   Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. of China
b   Shenzhen Grubbs Institute, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. of China
c   Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. of China
,
Xiao Gu
a   Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. of China
b   Shenzhen Grubbs Institute, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. of China
c   Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. of China
,
Chun-Yu Ho
a   Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. of China
b   Shenzhen Grubbs Institute, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. of China
c   Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. of China
› Author Affiliations
We thank Guangdong Provincial Key Laboratory of Catalysis (2020B121201002), Southern University of Science and Technology (SUSTech) (Y01501808, Y01506014), and the National Natural Science Foundation of China (NSFC) (22071096) for financial support.


Abstract

N-Heterocyclic carbene ligated transition-metal catalysts often show interesting properties and reactivity as compared to conventional ligand systems. In (NHC)Ni and (NHC)Pd hydrides, a dramatic reactivity changed from cross-hydroalkenylation to transfer-dehydroaromatization was observed under optimized conditions. This account summarizes our recent efforts and stories behind this serendipitous discovery. The mechanistic studies revealed that the keys to divert the desired reactivity are the differences in the olefin insertion selectivity and the hydrometallated species reactivity.



Publication History

Received: 13 January 2023

Accepted after revision: 06 February 2023

Article published online:
13 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Imanishi Y, Naga N. Prog. Polym. Sci. 2001; 26: 1147
    • 2a Tang H, Huo X, Meng Q, Zhang W. Acta Chim. Sin. 2016; 74: 219
    • 2b Liu G, Wu Y. In C-H Activation Shi Z.; Springer, Berlin, 2010; 195.
    • 2c Wang PS, Gong LZ. Acc. Chem. Res. 2020; 53: 2841
    • 3a Fiorito D, Scaringi S, Mazet C. Chem. Soc. Rev. 2021; 50: 1391
    • 3b Vasseur A, Bruffaerts J, Marek I. Nat. Chem. 2016; 8: 209
  • 5 Barnhart RW, Bazan GC, Mourey T. J. Am. Chem. Soc. 1998; 120: 1082
  • 6 Campbell RE, Newman TH. Jr, Malanga MT. Macromol. Symp. 1995; 97: 151
  • 7 Foster P, Chien JC. W, Rausch MD. Organometallics 1996; 15: 2404
  • 8 Nakatani H, Nitta KH, Takata T, Soga K. Polym. Bull. 1997; 38: 43
  • 9 Kaminsky W, Bark A, Däke I. In Studies in Surface Science and Catalysis . Keii T, Soga K. Elsevier; Amsterdam: 1990: 425
    • 10a Arndt M, Kaminsky W. Macromol. Symp. 1995; 95: 167
    • 10b Arndt M, Kaminsky W. Macromol. Symp. 1995; 97: 225
    • 11a Kaminsky W, Spiehl R. Makromol. Chem. 1989; 190: 515
    • 11b Kaminsky W, Bark A, Arndt M. Makromol. Chem., Macromol. Symp. 1991; 47: 83
    • 11c Kaminsky W, Engehausen R, Kopf J. Angew. Chem., Int. Ed. Engl. 1995; 34: 2273
    • 11d Jerschow A, Ernst E, Hermann W, Mueller N. Macromolecules 1995; 28: 7095
  • 12 Boggioni L, Tritto I. In Polyolefins: 50 Years after Ziegler and Natta II: Polyolefins by Metallocenes and Other Single-Site Catalysts. Kaminsky W. Springer; Berlin: 2013: 117
  • 13 Huang J, Turner SR. Polymer 2017; 116: 572
  • 14 Collins S, Kelly WM. Macromolecules 1992; 25: 233
  • 15 McLain SJ, Feldman J, McCord EF, Gardner KH, Teasley MF, Coughlin EB, Sweetman KJ, Johnson LK, Brookhart M. Macromolecules 1998; 31: 6705
  • 16 Li X, Hou Z. Coord. Chem. Rev. 2008; 252: 1842
  • 17 Kaminsky W, Boggioni L, Tritto I. In Polymer Science: A Comprehensive Reference . Matyjaszewski K, Möller M. Elsevier; Amsterdam: 2012: 843
  • 18 Wang X, Liu S, Weng L.-H, Jin G.-X. Organometallics 2006; 25: 3565
  • 19 Larionov E, Li H, Mazet C. Chem. Commun. 2014; 50: 9816
    • 20a Casey CP, Cyr CR. J. Am. Chem. Soc. 1973; 95: 2248
    • 20b Inoue S, Takaya H, Tani K, Otsuka S, Sato T, Noyori R. J. Am. Chem. Soc. 1990; 112: 4897
    • 20c Biswas S, Huang Z, Choliy Y, Wang DY, Brookhart M, Krogh-Jespersen K, Goldman AS. J. Am. Chem. Soc. 2012; 134: 13276
    • 21a Heck RF, Breslow DS. J. Am. Chem. Soc. 1961; 83: 4023
    • 21b Karapinka GL, Orchin M. J. Org. Chem. 1961; 26: 4187
    • 21c Taylor P, Orchin M. J. Am. Chem. Soc. 1971; 93: 6504
    • 21d Goetz RW, Orchin M. J. Am. Chem. Soc. 1963; 85: 1549
    • 21e Sasson Y, Rempel GL. Tetrahedron Lett. 1974; 15: 4133
    • 21f Kumobayashi H, Akutagawa S, Otsuka S. J. Am. Chem. Soc. 1978; 100: 3949
    • 21g Clark HC, Kurosawa H. Inorg. Chem. 1972; 11: 1275
    • 21h Clark HC, Kurosawa H. Inorg. Chem. 1973; 12: 357
    • 21i Clark HC, Kurosawa H. Inorg. Chem. 1973; 12: 1566
    • 21j Nishida M, Adachi N, Onozuka K, Matsumura H, Mori M. J. Org. Chem. 1998; 63: 9158
    • 21k Wakamatsu H, Nishida M, Adachi N, Mori M. J. Org. Chem. 2000; 65: 3966
    • 21l Terada Y, Arisawa M, Nishida A. J. Org. Chem. 2006; 71: 1269
    • 22a Massad I, Marek I. ACS Catal. 2020; 10: 5793
    • 22b Sommer H, Juliá-Hernández F, Martin R, Marek I. ACS Cent. Sci. 2018; 4: 153
    • 22c Mei T.-S, Patel HH, Sigman MS. Nature 2014; 508: 340
    • 22d Ross SP, Rahman AA, Sigman MS. J. Am. Chem. Soc. 2020; 142: 10516
  • 23 Kapat A, Sperger T, Guven S, Schoenebeck F. Science 2019; 363: 391
  • 24 Zhang A, RajanBabu TV. J. Am. Chem. Soc. 2006; 128: 5620
  • 25 Alderson T, Jenner EL, Lindsey RV. J. Am. Chem. Soc. 1965; 87: 5638
    • 26a Biswas S, Parsutkar MM, Jing SM, Pagar VV, Herbort JH, RajanBabu TV. Acc. Chem. Res. 2021; 54: 4545
    • 26b Lassauque N, Francio G, Leitner W. Adv. Synth. Catal. 2009; 351: 3133
    • 26c Ho CY, He LS, Chan CW. Synlett 2011; 1649
    • 26d Hilt G. Eur. J. Org. Chem. 2012; 4441
    • 26e RajanBabu TV. Chem. Rev. 2003; 103: 2845
    • 26f Hirano M. ACS Catal. 2019; 9: 1408
  • 27 Feng W.-M, Li T.-Y, Xiao L.-J, Zhou Q.-L. Org. Lett. 2021; 23: 7900
  • 28 Ho C.-Y, He L. J. Org. Chem. 2014; 79: 11873
  • 29 Ho C.-Y, He L. Chem. Commun. 2012; 48: 1481
  • 30 Chen W, Li Y, Chen Y, Ho C.-Y. Angew. Chem. Int. Ed. 2018; 57: 2677
    • 31a Kumareswaran R, Nandi M, RajanBabu TV. Org. Lett. 2003; 5: 4345
    • 31b Huang J.-Q, Ho C.-Y. Angew. Chem. Int. Ed. 2019; 58: 5702
    • 32a Larock RC, Johnson PL. J. Chem. Soc., Chem. Commun. 1989; 1368
    • 32b Arcadi A, Marinelli F, Bernocchi E, Cacchi S, Ortar G. J. Organomet. Chem. 1989; 368: 249
  • 33 Zhang H, Huang W, Wang T, Meng F. Angew. Chem. Int. Ed. 2019; 58: 11049
    • 34a Liu W, RajanBabu TV. J. Org. Chem. 2010; 75: 7636
    • 34b Muller G, Ordinas JI. J. Mol. Catal. A: Chem. 1997; 125: 97
    • 35a Yi CS, He Z, Lee DW. Organometallics 2001; 20: 802
    • 35b Ura Y, Tsujita H, Wada K, Kondo T, Mitsudo T.-a. J. Org. Chem. 2005; 70: 6623
  • 36 Sun X, Bai X.-Y, Li A.-Z, Li B.-J. Organometallics 2021; 40: 2182
  • 37 Pagar VV, RajanBabu TV. Science 2018; 361: 68
    • 38a Ho C.-Y, He L. Angew. Chem. Int. Ed. 2010; 49: 9182
    • 38b Zargari N, de Prevoisin G, Kim Y, Kaneshiro K, Runburg R, Park J, LaCroix K, Narain R, Lee BD, Lee JH, Jung KW. Tetrahedron Lett. 2016; 57: 815
    • 39a Bogdanović B, Henc B, Meister B, Pauling H, Wilke G. Angew. Chem., Int. Ed. Engl. 1972; 11: 1023
    • 39b Buono G, Siv C, Peiffer G, Triantaphylides C, Denis P, Mortreux A, Petit F. J. Org. Chem. 1985; 50: 1781
    • 39c Zhang A, RajanBabu TV. J. Am. Chem. Soc. 2006; 128: 54
    • 39d Cros P, Triantaphylides C, Buono G. J. Org. Chem. 1988; 53: 185
  • 41 Ho CY. Chem. Commun. 2010; 46: 466
  • 42 Gao Y, Houk KN, Ho C.-Y, Hong X. Org. Biomol. Chem. 2017; 15: 7131
  • 43 Lian X, Chen W, Dang L, Li Y, Ho CY. Angew. Chem. Int. Ed. 2017; 56: 9048
  • 44 Chen Y, Dang L, Ho C.-Y. Nat. Commun. 2020; 11: 2269
  • 45 Ho C.-Y, Chan C.-W, He L. Angew. Chem. Int. Ed. 2015; 54: 4512
  • 46 Page JP, RajanBabu TV. J. Am. Chem. Soc. 2012; 134: 6556
  • 47 Saini V, O’Dair M, Sigman MS. J. Am. Chem. Soc. 2015; 137: 608
    • 48a Ozawa F, Kobatake Y, Kubo A, Hayashi T. J. Chem. Soc., Chem. Commun. 1994; 1323
    • 48b Arcadi A, Cacchi S, Fabrizi G, Marinelli F, Pace P. Eur. J. Org. Chem. 1999; 3305
    • 49a Bayersdörfer R, Ganter B, Englert U, Keim W, Vogt D. J. Organomet. Chem. 1998; 552: 187
    • 49b Albert J, Cadena JM, Granell J, Muller G, Ordinas JI, Panyella D, Puerta C, Sañudo C, Valerga P. Organometallics 1999; 18: 3511
    • 49c Tsukada N, Setoguchi H, Mitsuboshi T, Inoue Y. Chem. Lett. 2006; 35: 1164
    • 50a Yamamoto T, Yamamoto A, Ikeda S. J. Am. Chem. Soc. 1971; 93: 3350
    • 50b Koga N, Obara S, Kitaura K, Morokuma K. J. Am. Chem. Soc. 1985; 107: 7109
  • 51 Biswas S, Zhang A, Raya B, RajanBabu TV. Adv. Synth. Catal. 2014; 356: 2281
  • 52 Bothe U, Rudbeck HC, Tanner D, Johannsen M. J. Chem. Soc., Perkin Trans. 1 2001; 3305
  • 53 Barlow MG, Bryant MJ, Haszeldine RN, Mackie AG. J. Organomet. Chem. 1970; 21: 215
  • 54 Ho C.-Y, He L. Chem. Commun. 2012; 48: 1481
  • 55 He L, Ho C.-Y. Synlett 2014; 25: 2738
  • 56 Ahn H, Son I, Lee J, Lim HJ. Asian J. Org. Chem. 2017; 6: 335
  • 57 Chen W, Chen Y, Gu X, Chen Z, Ho C.-Y. Nat. Commun. 2022; 13: 5507
  • 58 Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
    • 60a Wang P.-S, Gong L.-Z. Acc. Chem. Res. 2020; 53: 2841
    • 60b Kato S, Saga Y, Kojima M, Fuse H, Matsunaga S, Fukatsu A, Kondo M, Masaoka S, Kanai M. J. Am. Chem. Soc. 2017; 139: 2204
    • 61a Green M, Haszeldine RN, Lindley J. J. Organomet. Chem. 1966; 6: 107
    • 61b Wolfe S, Campbell PG. C. J. Am. Chem. Soc. 1971; 93: 1499
    • 61c Trost BM, Metzner PJ. J. Am. Chem. Soc. 1980; 102: 3572
    • 61d Burk MJ, Crabtree RH. J. Am. Chem. Soc. 1987; 109: 8025
    • 61e Sheldon RA, Sobczak JM. J. Mol. Catal. 1991; 68: 1
    • 63a Vedernikov AN. In Frontiers of Green Catalytic Selective Oxidations 2019; 223
    • 63b Liron F, Oble J, Lorion MM, Poli G. Eur. J. Org. Chem. 2014; 5863
    • 64a Mann SE, Aliev AE, Tizzard GJ, Sheppard TD. Organometallics 2011; 30: 1772
    • 64b Fraunhoffer KJ, White MC. J. Am. Chem. Soc. 2007; 129: 7274
  • 65 Engelin C, Jensen T, Rodriguez-Rodriguez S, Fristrup P. ACS Catal. 2013; 3: 294
  • 66 Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 67a Hu R.-B, Wang C.-H, Ren W, Liu Z, Yang S.-D. ACS Catal. 2017; 7: 7400
    • 67b Ren W, Jin M, Zuo Q.-M, Yang S.-D. Org. Chem. Front. 2020; 7: 298
  • 68 Niu X, Yang L. Adv. Synth. Catal. 2021; 363: 4209