Synlett
DOI: 10.1055/s-0043-1763570
cluster
Energetic Molecules

Thermostable Insensitive Energetic Materials Based on a Triazolopyridine Fused Framework with Alternating Nitro and Amine Groups

You Ran
a   Institute of Chemical Materials, China Academy of Engineering Physics
Mianyang, 621900, P. R. of China
,
Honglei Xia
a   Institute of Chemical Materials, China Academy of Engineering Physics
Mianyang, 621900, P. R. of China
,
Siwei Song
a   Institute of Chemical Materials, China Academy of Engineering Physics
Mianyang, 621900, P. R. of China
,
Kangcai Wang
a   Institute of Chemical Materials, China Academy of Engineering Physics
Mianyang, 621900, P. R. of China
,
Qinghua Zhang
a   Institute of Chemical Materials, China Academy of Engineering Physics
Mianyang, 621900, P. R. of China
b   School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, P. R. of China
› Author Affiliations
The National Natural Science Foundation of China (Grant Nos. 22175157 and 22205217), and the China Postdoctoral Science Foundation (No. 2022M712979).


Abstract

In this work, we designed and synthesized a series of novel triazolopyridine fused-ring compounds with alternating nitro and amine groups. Three compounds showed remarkable thermal stability at 256, 310, and 294 °C, respectively, and a low mechanical sensitivity [impact sensitivity (IS) = 40 J, friction sensitivity (FS) = 324 N; IS = 35 J, FS = 240 N; and IS > 40 J, FS = 324 N, respectively]. Significantly, two of these compounds exhibited a better detonation performance [detonation velocity (D) = 8200 and 8335 m s–1, Detonation pressure (P) = 25.6 and 27.2 GPa, respectively] than the widely used heat-resistant explosive hexanitrostilbene (HNS; D = 7612 m s–1, P = 24.3 GPa). Additionally, a nitramine derivative displayed a detonation performance (D = 8569 m s–1, P = 31.3 GPa) similar to that of the high-energy explosive RDX. The superior properties of the materials were further confirmed by X-ray diffraction analysis and by several theoretical calculations (ESP, LOL–π, Hirshfeld surfaces, RDG, and NCI analyses). These results indicated that the three compounds might be potential candidates for use as heat-resistant energetic materials.

Supporting Information



Publication History

Received: 31 August 2023

Accepted after revision: 25 September 2023

Article published online:
27 October 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP. J. Hazard. Mater. 2008; 151: 289
  • 2 Gao H, Shreeve JM. Chem. Rev. 2011; 111: 7377
  • 3 O’Sullivan OT, Zdilla MJ. Chem. Rev. 2020; 120: 5682
  • 4 Li C, Zhang M, Chen Q, Li Y, Gao H, Fu W, Zhou Z. Chem. Eur. J. 2017; 23: 1490
  • 5 Yan T, Yang H, Yang C, Yi Z, Zhu S, Cheng G. J. Mater. Chem. A 2020; 8: 23857
  • 6 Boddu VM, Viswanath DS, Ghosh TK, Damavarapu R. J. Hazard. Mater. 2010; 181: 1
  • 7 Shipp KG. J. Org. Chem. 1964; 29: 2620
  • 8 Hollins RA, Merwin LH, Nissan RA, Wilson WS, Gilardi R. J. Heterocycl. Chem. 1996; 33: 895
  • 9 Klapötke TM, Stierstorfer J, Weyrauther M, Witkowski TG. Chem. Eur. J. 2016; 22: 8619
  • 10 Gao H, Zhang Q, Shreeve JM. J. Mater. Chem. A 2020; 8: 4193
  • 11 Lei C, Cheng G, Yi Z, Zhang Q, Yang H. Chem. Eng. J. (Amsterdam, Neth.) 2021; 416: 129190
  • 12 Tang Y, He C, Imler GH, Parrish DA, Shreeve JM. ACS Appl. Energy Mater. 2019; 2: 2263
  • 13 Rudakov GF, Sinditskii VP, Andreeva IA, Botnikova AI, Veselkina PR, Kostanyan SK, Yudin NV, Serushkin VV, Cherkaev GV, Dorofeeva OV. Chem. Eng. J. (Amsterdam, Neth.) 2022; 450: 138073
  • 14 Li J, Liu Y, Ma W, Fei T, He C, Pang S. Nat. Commun. 2022; 13: 5697
  • 15 Zeng Z, Liu Y, Lv Q, Huang W, Yang H, Cheng G, Tang Y. Chem. Eng. J. (Amsterdam, Neth.) 2022; 450: 138094
  • 16 Cao Y.-t, Cai Z.-w, Shi J.-h, Zhang Q.-h, Liu Y, Zhang W.-q. Energ. Mater. Front. 2022; 3: 26
  • 17 Chen S.-t, Qi X.-j, Liu T.-l, Zhang Q.-h. Energ. Mater. Front. 2022; 3: 137
  • 18 Jiang L, Lv R, Wang J, Song S, Chen Y, Ge X, Wang K, Zhang Q. FirePhysChem 2023; 3: 98
  • 19 Hu L, Yin P, Imler GH, Parrish DA, Gao H, Shreeve JM. Chem. Commun. 2019; 55: 8979
  • 20 Cao Y, Cai Z, Xia H, Wang K, Liu Y, Zhang Q, Zhang W. Chem. Eng. J. (Amsterdam, Neth.) 2022; 432: 134297
  • 21 Piercey DG, Chavez DE, Scott BL, Imler GH, Parrish DA. Angew. Chem. Int. Ed. 2016; 55: 15315
  • 22 Chen S, Zhang W, Wang Y, Zhang Q. Chem. Eng. J. (Amsterdam, Neth.) 2021; 421: 129635
  • 23 He C, Yin P, Mitchell LA, Parrish DA, Shreeve JM. Chem. Commun. 2016; 52: 8123
  • 24 Li J, Wang S, Liao L, Ma Q, Zhang Z, Fan G. New J. Chem. 2019; 43: 10675
  • 25 Xiong Y, Ma Y, He X, Xue X, Zhang C. Phys. Chem. Chem. Phys. 2019; 21: 2397
  • 26 Ma C, Liu Z, Yao Q. Heterocycl. Commun. 2016; 22: 251
  • 27 Lei C, Yang H, Yang W, Zhang Q, Cheng G. Cryst. Growth Des. 2022; 22: 2594
  • 28 Ma C, Wang Y, Hou K, Liu Z, Yao Q. Chin. J. Chem. 2013; 31: 1299
  • 29 CCDC 2266197, 2255296, and 2255299, contains the supplementary crystallographic data for compounds 4·DMF, 8, 9·2DMF. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
  • 30 Allen FH, Kennard O, Watson DG. J. Chem. Soc., Perkin Trans. 2 1987; S1
  • 31 Sun CC. J. Pharm. Sci. 2007; 96: 1043
  • 32 Lu T, Chen F. J. Comput. Chem. 2012; 33: 580
  • 33 Lu T, Chen F. J. Mol. Graphics Modell. 2012; 38: 314
  • 34 Liu T, Liao S, Song S, Wang K, Jin Y, Zhang Q. Chem. Commun. 2020; 56: 209
  • 35 Li X, Sun Q, Lin Q, Lu M. Chem. Eng. J. (Amsterdam, Neth.) 2021; 406: 126817
  • 36 McKinnon JJ, Spackman MA, Mitchell AS. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 2004; 60: 627
  • 37 Zhang C, Wang X, Huang H. J. Am. Chem. Soc. 2008; 130: 8359
  • 38 Zhang J, Mitchell LA, Parrish DA, Shreeve JM. J. Am. Chem. Soc. 2015; 137: 10532
  • 39 Tang Y, Huang W, Imler GH, Parrish DA, Shreeve JM. J. Am. Chem. Soc. 2020; 142: 7153
  • 40 Ding L, Wang P, Lin Q, Li D, Xu Y, Lu M. Chem. Eng. J. (Amsterdam, Neth.) 2022; 432: 134293
  • 41 Chang J, He C, Pang S, Shreeve JM. Chem. Eng. J. (Amsterdam, Neth.) 2022; 450: 137841
  • 42 Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W. J. Am. Chem. Soc. 2010; 132: 6498
  • 43 CAUTION! These new compounds are energetic materials with a high potential for explosion under certain conditions. It is therefore essential to take appropriate protective measures at all times when handling these materials.Amine 1 (2.53 g, 10 mmol) was dissolved in CH2Cl2 (100 mL) and 25% aq NH3 (3 mL) in EtOH (30 mL) was added dropwise at 0 °C. The mixture was allowed to react for 24 h and then the solids were collected by filtration and washed with H2O and MeOH. The crude product was crystallized from DMSO–EtOAc to give a faintly yellow solid; yield: 1.65 g (71%).IR (KBr): 3416, 3285, 3167, 1596, 1522, 1283, 1021, 969, 871, 831, 786, 629 cm–1. 1H NMR (400 MHz, DMSO-d6): δ = 8.75–8.89 (m, 4 H, NH2). 13C NMR (100 MHz, DMSO-d6): δ = 113.7, 123.0, 147.3, 147.6, 154.4. HRMS (ESI): m/z [M – H]+ calcd for C5H3ClN5O4: 231.9879; found; 231.9876.6-Hydrazino-3,5-dinitropyridine-2,4-diamine (3) A solution of N2H4·H2O (0.7 mL, 15 mmol) in EtOH (10 mL) was slowly added to a mixture of 2 (1.16 g, 5 mmol) and EtOH (30 mL). The mixture was stirred for 3 h and then filtered. The resulting solid was washed sequentially with H2O and EtOH and dried to give a yellow solid; yield: 1.02 g (95%).IR (KBr pellet): 3393, 3343, 3242, 3181, 1615, 1542, 1268, 1201, 1059, 973, 784, 697, 545 cm–1. 1H NMR (400 MHz, DMSO-d6): δ = 5.46 (s, 2 H, NH2), 8.66 (d, J = 157.2 Hz, 2 H, NH2), 10.47 (d, J = 72.8 Hz, 2 H, NH2), 10.88 (s, 1 H, NH). 13C NMR (100 MHz, DMSO-d6): δ = 108.8, 109.5, 148.3, 151.7, 155.7. HRMS (ESI): m/z [M – H]+ calcd for C5H6N7O4: 228.0487; found: 228.0488.6,8-Dinitro[1,2,4]triazolo[4,3-a]pyridine-3,5,7-triamine (4) A solution of BrCN (508.8 mg, 4.8 mmol) in MeCN (14 mL) was added to a suspension of 3 (890 mg, 4 mmol) in MeOH (14 mL) and H2O (21 mL) at r.t. The mixture was heated to 50 °C for 12 h, then cooled to r.t. The solid was collected by filtration, washed successively with H2O and EtOH, and dried to give a yellow powder; yield: 888 mg (87%).IR (KBr ): 3370, 3322, 3213, 1673, 1628, 1597, 1525, 1474, 1397, 1270, 1215, 1172, 1081, 961, 881, 690 cm–1. 1H NMR (400 MHz, DMSO-d6): δ = 8.17 (s, 2 H, NH2), 10.60–10.67 (m, 3 H, NH2 and C=NH), 14.11 (s, 1 H, NH). 13C NMR (100 MHz, DMSO-d6): δ = 104.0, 110.6, 138.2, 148.7, 150.3, 151.8. HRMS (ESI): m/z [M – H]+ calcd for C6H5N8O4: 53.0439; found: 253.0449. Anal. Calcd for C6H6N8O4 (254.16): C, 28.35; H, 2.38; N, 44.09. Found: C, 28.14; H, 2.56; N, 41.15.3,7-Diamino-6,8-dinitro[1,2,4]triazolo[4,3-a]pyridin-5(1H)-one (5) A mixture of 4 (254 mg, 1 mmol) and 20% H2SO4 (6 mL) was treated with potassium peroxomonosulfate (Oxone) (770 mg, 2.5 mmol) at r.t. The mixture was heated to 90 °C with stirring for 12 h, then cooled to r.t. The resulting mixture was filtered, and the solids were washed successively with H2O and EtOH, then dried to afford a yellow solid; yield: 216 mg (85%).IR (KBr pellet): 3478, 3333, 3249, 1609, 1509, 1282, 1228, 1175, 1108, 778, 693, 593 cm–1. 1H NMR (400 MHz, DMSO-d6): δ = 7.42 (s, 2 H, NH2), 9.55 (s, 1 H, NH2), 10.04 (s, 1 H, NH2), 14.10 (s, 1 H, NH). 13C NMR (100 MHz, DMSO-d6): δ = 104.6, 113.7, 139.1, 150.6, 151.4, 153.0. HRMS (ESI): m/z [M – H]+ calcd for C6H4N7O5: 254.0279; found. 254.0270. Anal. Calcd for C6H5N7O5 (255.15): C, 28.24; H, 1.98; N, 38.43. Found: C, 28.98; H, 2.60; N, 35.24.6,8-Dinitro[1,2,4]triazolo[4,3-a]pyridine-3,5,7-triamine (7) A solution of N2H4·H2O (0.7 mL, 15 mmol) in EtOH (10 mL) was added slowly to a mixture of amine 6 (1.09 g, 5 mmol) and EtOH (30 mL) at r.t., and the mixture was allowed to react for 3 h, The resulting solid was washed sequentially with H2O and EtOH, then dried to give a green solid; yield: 1.0 g (94%).IR (KBr): 3408, 3371, 3338, 3286, 3251, 1610, 1550, 1495, 1381, 1268, 1205, 1120, 1067, 962, 777, 709, 653 cm–1. 1H NMR (400 MHz, DMSO-d6): δ = 5.94 (s, 2 H, NH2), 8.94 (s, 1 H, CH), 9.71 (d, J = 15.48 Hz, 2 H, NH2), 11.43 (s, 1 H, NH). 13C NMR (100 MHz, DMSO-d6): δ = 111.8, 121.0, 148.5, 148.8, 153.7. HRMS (ESI+): m/z [M + H]+ calcd for C5H7N6O4: 215.0523; found: 215.0526.6,8-Dinitro[1,2,4]triazolo[1,5-a]pyridine-2,7-diamine (8) A solution of BrCN (508.8 mg, 4.8 mmol) in MeCN (14 mL) was added to a suspension of 7 (856 mg, 4 mmol) in MeOH (14 mL) and H2O (21 mL) at r.t., and the mixture was stirred at 50 °C for 12 h. The mixture was then cooled to r.t. and filtered to give a solid that was washed successively with H2O and EtOH, then dried to give an orange powder; yield: 812.6 mg (85%).IR (KBr pellet): 3415, 3298, 3159, 3049, 1645, 1547, 1494, 1432, 1289, 1042, 900, 776, 608 cm–1. 1H NMR (400 MHz, DMSO-d6): δ = 7.03 (s, 2 H, NH2), 9.22 (s, 2 H, NH2), 9.68 (s, 1 H, CH). 13C NMR (100 MHz, DMSO-d6): δ = 115.0, 123.7, 134.0, 143.9, 149.7, 169.0. HRMS (ESI+): m/z [M + H]+ calcd for C6H6N7O4: 240.0476; found: 240.0477. Anal. Calcd for C6H5N7O4 (240.16): C, 30.01; H, 2.52; N, 40.83. Found: C, 30.44; H, 2.16; N, 37.77.N2,6,8-Trinitro[1,2,4]triazolo[1,5-a]pyridine-2,7-diamine (9) 8 (478 mg, 2 mmol) was added in portions to a mixture of concd H2SO4 (4 mL) and fuming HNO3 (4 mL) at 0 °C. The mixture was stirred for 24 h at 0 °C, then poured onto ice. The resulting precipitate was collected by filtration, washed successively with H2O and EtOH, and dried to give a yellow solid; yield: 528 mg (93%).IR (KBr pellet): 3429, 3312, 1674, 1625, 1537, 1445, 1291, 1252, 899, 775, 646 cm–1. 1H NMR (400 MHz, DMSO-d6): δ = 9.28 (s, 2 H, NH2), 10.19 (s, 1 H, CH). 13C NMR (100 MHz, DMSO-d6): δ = 116.5, 128.4, 136.5, 144.1, 148.5, 159.7. HRMS (ESI): m/z [M – H]+ calcd for C6H3N8O6: 283.0181; found: 283.0181. Anal. Calcd for C6H4N8O6 (284.15): C, 25.36; H, 1.42; N, 39.44. Found: C, 25.39; H, 2.65; N, 35.38.