Synthesis 2021; 53(20): 3751-3759
DOI: 10.1055/a-1503-9010
feature

Copper/Di-tert-butyl Peroxide-Catalyzed Regioselective Hydroxyphosphorylation of 1,3-Enynes

Shaoqun Zhu
,
Jiawei Wang
,
Bing Zhou
,
Hong Hou
We gratefully acknowledge financial support from the National Natural Science Foundation of China (21702179), the Priority Academic Program Development of Jiangsu Higher Education Institutions, a project supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (17KJB150042), and the Lvyangjinfeng Talent Program of Yangzhou.


Abstract

The copper/di-tert-butyl peroxide-catalyzed regioselective hydroxyphosphorylation of 1,3-enynes is described. The advantages of the reported radical reactions are excellent functional group tolerance, the use of a catalytic amount of copper and di-tert-butyl peroxide ( t BuOO t Bu) as a radical initiator, and mild reaction conditions. The desired products are obtained in moderate to excellent yields after purification.

Supporting Information



Publication History

Received: 27 April 2021

Accepted after revision: 10 May 2021

Accepted Manuscript online:
10 May 2021

Article published online:
18 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Phosphorus-Based Polymers: From Synthesis to Applications . Monge S, David G. RSC Polymer Chemistry Series, Book 11; The Royal Society of Chemistry; Cambridge: 2014
    • 2a Wydysh EA, Medghalchi SM, Vadlamudi A, Townsend CA. J. Med. Chem. 2009; 52: 3317
    • 2b Demmer CS, Krogsgaard-Larsen N, Bunch L. Chem. Rev. 2011; 111: 7981
    • 2c Gagnon KJ, Perry HP, Clearfield A. Chem. Rev. 2012; 112: 1034
    • 2d Queffélec C, Petit M, Janvier P, Knight DA, Bujoli B. Chem. Rev. 2012; 112: 3777
    • 2e Carroll MP, Guiry PJ. Chem. Soc. Rev. 2014; 43: 819
    • 2f Montchamp J.-L. Acc. Chem. Res. 2014; 47: 77
    • 2g Ni H, Chan W, Lu Y. Chem. Rev. 2018; 118: 9344
    • 2h Guo H, Fan YC, Sun Z, Wu Y, Kwon O. Chem. Rev. 2018; 118: 10049
    • 2i Clevenger AL, Stolley RM, Aderibigbe J, Louie J. Chem. Rev. 2020; 120: 6124
  • 3 Gao Y, Tang G, Zhao Y. Phosphorus, Sulfur Silicon Relat. Elem. 2017; 192: 589
    • 4a Leca D, Fensterbank L, Lacote E, Malacria M. Chem. Soc. Rev. 2005; 34: 858
    • 4b Wauters I, Debrouwer W, Stevens CV. Beilstein J. Org. Chem. 2014; 10: 1064
    • 4c Pan X, Zou J, Yi W, Zhang W. Tetrahedron 2015; 71: 7481
    • 4d Quint V, Noël-Duchesneau L, Lagadic E, Morlet-Savary F, Lalevée J, Gaumont A.-C, Lakhdar S. Synthesis 2017; 49: 3444
    • 4e Taniguchi T. Synthesis 2017; 49: 3511
    • 4f Fang G, Cong X, Zanoni G, Liu Q, Bi X. Adv. Synth. Catal. 2017; 359: 1422
    • 4g Gao Y, Tang G, Zhao Y. Chin. J. Org. Chem. 2018; 38: 62
    • 4h Cai B, Xuan J, Xiao W. Sci. Bull. 2019; 64: 337
    • 5a Westheimer FH. The Role of Phosphorus in Chemistry and Biochemistry . In Phosphorus Chemistry, Chap. 1. Walsh EN, Griffith EJ, Parry RW, Quin LD. ACS Symposium Series 486; American Chemical Society; Washington DC: 1992: 1-17
    • 5b Marque S, Tordo P. Top. Curr. Chem. 2005; 250: 43
    • 6a Gao Y, Wu J, Xu J, Zhang P, Tang G, Zhao Y. RSC Adv. 2014; 4: 51776
    • 6b Zhou S, Li D, Liu K, Zou J, Asekun O. J. Org. Chem. 2015; 80: 1214
    • 6c Richard V, Fisher HC, Montchamp JL. Tetrahedron Lett. 2015; 56: 3197
    • 6d Gao Y, Li X, Xu J, Wu Y, Chen W, Tang G, Zhao Y. Chem. Commun. 2015; 51: 1605
    • 6e Xu J, Li X, Gao Y, Zhang L, Chen W, Fang H, Tang G, Zhao Y. Chem. Commun. 2015; 51: 11240
    • 6f Zhang G, Li C, Li D, Zeng R, Shoberu A, Zou J. Tetrahedron 2016; 72: 2972
    • 6g Zhang P, Zhang L, Li J, Shoberu A, Zou J, Zhang W. Org. Lett. 2017; 19: 5537
    • 7a Wei W, Ji J. Angew. Chem. Int. Ed. 2011; 50: 9097
    • 7b Gutierrez V, Mascaró E, Alonso F, Moglie Y, Radivoy G. RSC Adv. 2015; 5: 65739
    • 7c Zhang H, Mao L, Yang B, Yang S. Chem. Commun. 2015; 51: 4101
    • 7d Li J, Zhang P, Liu K, Shoberu A, Zou J, Zhang W. Org. Lett. 2017; 19: 4704
    • 7e Yi D, Fu Q, Chen S, Gao M, Yang L, Zhang Z, Liang W, Zhang Q, Ji J, Wei W. Tetrahedron Lett. 2017; 58: 2058
    • 7f Tao Z, Li C, Zhang P, Shoberu A, Zou J, Zhang W. J. Org. Chem. 2018; 83: 2418
    • 7g Chen Y, Chen Y, Lu S, Li Z. Org. Chem. Front. 2018; 5: 972
    • 8a Li Y, Sun M, Wang H, Tian Q, Yang S. Angew. Chem. Int. Ed. 2013; 52: 3972
    • 8b Zhang C, Li Z, Zhu L, Yu L, Wang Z, Li C. J. Am. Chem. Soc. 2013; 135: 14082
    • 8c Kong W, Merino E, Nevado C. Angew. Chem. Int. Ed. 2014; 53: 5078
    • 8d Mi X, Wang C, Huang M, Wu Y, Wu Y. Org. Biomol. Chem. 2014; 12: 8394
    • 8e Zhao J, Li P, Li X, Xia C, Li F. Chem. Commun. 2016; 52: 3661
    • 8f Zhang H, Gu Z, Li Z, Pan C, Li W, Hu H, Zhu C. J. Org. Chem. 2016; 81: 2122
    • 8g Zheng J, Zhang Y, Wang D, Cui S. Org. Lett. 2016; 18: 1768
  • 9 Shen J, Xiao B, Hou Y, Wang X, Li G, Chen J, Wang W, Cheng J, Yang B, Yang S. Adv. Synth. Catal. 2019; 361: 5198
  • 10 Peng P, Lu Q, Peng L, Liu C, Wang G, Lei A. Chem. Commun. 2016; 52: 12338
  • 11 Li M, Zhang Q, Hu D, Zhong W, Cheng M, Ji J, Wei W. Tetrahedron Lett. 2016; 57: 2642
  • 12 Lu F.-D, Jiang X, Lu L.-Q, Xiao W.-J. Acta Chim. Sinica 2019; 77: 803
    • 13a Zhang X, Lu Z, Fu C, Ma S. Org. Biomol. Chem. 2009; 7: 3258
    • 13b Cadierno V, Crochet P, García-Garrido SE, Gimeno J. Dalton Trans. 2010; 39: 4015
    • 13c Huang X, Jiao N. Org. Biomol. Chem. 2014; 12: 4324
    • 13d Roy R, Sah S. RSC Adv. 2018; 8: 31129
    • 13e Ye C, Li Y, Zhu X, Hu S, Yuan D, Bao H. Chem. Sci. 2019; 10: 3632
    • 13f Zeng Y, Chiou M.-F, Zhu X, Cao J, Lv D, Jian W, Li Y, Zhang X, Bao H. J. Am. Chem. Soc. 2020; 142: 18014
    • 13g Zhang Q, Muhammad MT, Chiou M.-F, Jiao Y, Bao H, Li Y. Org. Lett. 2020; 22: 5261
    • 13h Muhammad MT, Jiao Y, Ye C, Chiou M.-F, Israr M, Zhu X, Li Y, Wen Z, Studer A, Bao H. Nat. Commun. 2020; 11: 416
  • 14 Full details of the HRMS analysis can be found in the Supporting Information.
  • 15 Taniguchi T, Idota A, Yokoyama S, Ishibashi H. Tetrahedron Lett. 2011; 52: 4768
  • 16 Shoberu A, Li S, Zhang G, Li D, Zou J. Tetrahedron 2019; 75: 130683
    • 17a Hou H, Li H, Han Y, Yan C. Org. Chem. Front. 2018; 5: 51
    • 17b Hou H, Li H, Xu Y, Song C, Wang C, Shi Y, Han Y, Yan C, Zhu S. Adv. Synth. Catal. 2018; 360: 4325
    • 17c Hou H, Tang D, Li H, Xu Y, Yan C, Shi Y, Chen X, Zhu S. J. Org. Chem. 2019; 84: 7509
    • 17d Hou H, Xu Y, Yang H, Yan C, Shi Y, Zhu S. Org. Biomol. Chem. 2019; 17: 8175
    • 17e Hou H, Xu Y, Yang H, Chen X, Yan C, Shi Y, Zhu S. Org. Lett. 2020; 22: 1478
    • 17f Zhu S, Yang H, Jiang A, Zhou B, Han Y, Yan C, Shi Y, Hou H. J. Org. Chem. 2020; 85: 15667
    • 17g Hou H, Sun Y, Pan Y, Yu H, Han Y, Yan C, Shi Y, Zhu S. J. Org. Chem. 2021; 86: 1273
    • 17h Hou H, Zhou B, Wang J, Zhao D, Sun D, Chen X, Han Y, Yan C, Shi Y, Zhu S. Org. Lett. 2021; 23: 2981