Synthesis 2014; 46(18): 2413-2421
DOI: 10.1055/s-0034-1378393
short review
© Georg Thieme Verlag Stuttgart · New York

Rearrangements of Nitrile-Stabilized Ammonium Ylides

Günther Lahm
Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10–14, 55128 Mainz, Germany   Fax: +49(6131)3922338   Email: opatz@uni-mainz.de
,
Julio Cesar Orejarena Pacheco
Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10–14, 55128 Mainz, Germany   Fax: +49(6131)3922338   Email: opatz@uni-mainz.de
,
Till Opatz*
Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10–14, 55128 Mainz, Germany   Fax: +49(6131)3922338   Email: opatz@uni-mainz.de
› Author Affiliations
Further Information

Publication History

Received: 23 April 2014

Accepted after revision: 13 June 2014

Publication Date:
18 July 2014 (online)


Dedicated to Professor Paul Margaretha on the occasion of his 70th birthday

Abstract

Rearrangements of nitrile-stabilized ammonium ylides are useful reactions for the construction of alkylamines, nitrogen heterocycles, or carbonyl compounds. In spite of their attractive synthetic potential, they are much less frequently used than rearrangements of ammonium ylides either carrying charge-stabilizing carbonyl groups or being devoid of additional stabilization of the negative charge. This review focuses on different classes of rearrangements of nitrile-stabilized ammonium ylides as well as their application in synthetic organic chemistry.

1 Introduction

2 [1,2]-Stevens Rearrangements

3 [2,3]-Sommelet–Hauser Rearrangement

4 [2,3]-Stevens Rearrangements

5 Competitive [1,2]-, [2,3]-, and [1,4]-Rearrangements

6 [1,4]-Rearrangements Involving Ring Expansion

7 Summary

 
  • References

  • 1 Woodward RB, Hoffmann R. Angew. Chem., Int. Ed. Engl. 1969; 8: 781
  • 2 Spangler CW. Chem. Rev. 1976; 76: 187
  • 3 Nitrogen, Oxygen and Sulfur Ylide Chemistry: A Practical Approach in Chemistry. Clark JS. Oxford University Press; Oxford: 2002
  • 4 Advances in Nitrogen Heterocycles . Vol. 3. Moody CJ. JAI Press; New York: 1998
  • 5 Ghigo G, Cagnina S, Maranzana A, Tonachini G. J. Org. Chem. 2010; 75: 3608
  • 6 Biswas B, Collins SC, Singleton DA. J. Am. Chem. Soc. 2014; 136: 3740
  • 7 Vanecko JA, Wan H, West FG. Tetrahedron 2006; 62: 1043
  • 8 Pine SH. Org. React. 1970; 18: 403
  • 9 Bur S, Padwa A. Ammonium Ylides as Building Blocks for Alkaloid Synthesis. In Modern Tools for the Synthesis of Complex Bioactive Molecules. Cossy J, Arseniyadis S. Wiley; New York: 2012: 433-484
  • 10 Sweeney JB. Chem. Soc. Rev. 2009; 38: 1027
  • 11 Aggarwal VK, Harvey JN, Robiette R. Angew. Chem. Int. Ed. 2005; 44: 5468
  • 12 Albright JD. Tetrahedron 1983; 39: 3207
  • 13 Stevens TS, Creighton EM, Gordon AB, MacNicol M. J. Chem. Soc. 1928; 3193
  • 14 Ollis WD, Rey M, Sutherland IO. J. Chem. Soc., Perkin Trans. 1 1983; 1009
  • 15 Ghigo G, Cagnina S, Maranzana A, Tonachini G. J. Org. Chem. 2010; 75: 3608
  • 16 Paton JM, Pauson PL, Stevens TS. J. Chem. Soc. C 1969; 2130
  • 17 Tomioka H, Suzuki K. Tetrahedron Lett. 1989; 30: 6353
  • 18 Orejarena Pacheco JC, Lahm G, Opatz T. J. Org. Chem. 2013; 78: 4985
  • 19 Liu YX, Liang XT. Chin. Chem. Lett. 2001; 12: 7
  • 20 Lahm G, Stoye A, Opatz T. J. Org. Chem. 2012; 77: 6620
  • 21 Sommelet M. C. R. Acad. Sci. 1937; 205: 56
  • 22 Zografos AL. Sommelet–Hauser Rearrangement. In Name Reactions in Heterocyclic Chemistry. Li JJ. Wiley; New York: 2011: 197-206
  • 23 Sanders EB, Secor HV, Seeman JI. J. Org. Chem. 1976; 41: 2658
  • 24 Sanders EB, Secor HV, Seeman JI. J. Org. Chem. 1978; 43: 324
  • 25 Weinreb SM, Basha FZ, Hibino S, Khatri NA, Kim D, Pye WE, Wu TT. J. Am. Chem. Soc. 1982; 104: 536
  • 26 Klunder JM. J. Heterocycl. Chem. 1995; 32: 1687
  • 27 Millard BJ, Stevens TS. J. Chem. Soc. 1963; 3397
  • 28 Rautenstrauch V. Helv. Chim. Acta 1972; 55: 2233
  • 29 Mageswaran S, Ollis WD, Sutherland IO. J. Chem. Soc., Chem. Commun. 1973; 656
  • 30 Hiroi K, Nakazawa K. Chem. Lett. 1980; 1077
  • 31 Drouillat B, Couty F, Marrot J. Synlett 2009; 767
  • 32 Mander LN, Turner JV. J. Org. Chem. 1973; 38: 2915
  • 33 Mander LN, Turner JV, Coombe BG. Aust. J. Chem. 1974; 27: 1985
  • 34 Cossey A, Mander L, Turner J. Aust. J. Chem. 1980; 33: 2061
  • 35 Mander LN, Turner JV, Twitchin B. Tetrahedron Lett. 1981; 22: 3017
  • 36 Sugahara T, Komatsu Y, Takano S. J. Chem. Soc., Chem. Commun. 1984; 214
  • 37 Büchi G, Wüest H. J. Am. Chem. Soc. 1974; 96: 7573
  • 38 Bryson TA, Pye WE. J. Org. Chem. 1977; 42: 3214
  • 39 Kametani T, Suzuki T, Sato E, Nishimura M, Unno K. J. Chem. Soc., Chem. Commun. 1982; 1201
  • 40 Stella L. Tetrahedron Lett. 1984; 25: 3457
  • 41 Stella L, Amrollah-Madjdabadi A. Synth. Commun. 1984; 14: 1141
  • 42 Amrollah-Madjdabadi A, Stella L. Bull. Soc. Chim. Fr. 1987; 350
  • 43 Honda K, Igarashi D, Asami M, Inoue S. Synlett 1998; 685
  • 44 Jończyk A, Lipiak D. J. Org. Chem. 1991; 56: 6933
  • 45 Jończyk A, Lipiak D, Sienkiewicz K. Synlett 1991; 493
  • 46 Zdrojewski T, Jończyk A. Tetrahedron Lett. 1995; 36: 1355
  • 47 Jończyk A, Zdrojewski T, Grzywacz P, Balcerzak P. J. Chem. Soc., Perkin Trans. 1 1996; 2919
  • 48 Zdrojewski T, Golebiowski R, Mirkowska A, Jończyk A. Pol. J. Chem. 1999; 73: 1955
  • 49 Kowalkowska A, Jończyk A. Synth. Commun. 2011; 41: 3308
  • 50 Zdrojewski T, Jończyk A. Tetrahedron Lett. 1995; 36: 1355
  • 51 Zdrojewski T, Jończyk A. J. Org. Chem. 1998; 63: 452
  • 52 Soldatenkov AT, Soldatova SA, Suleimanov RR, Kolyadina NM, Khrustalev VN. Chem. Heterocycl. Compd. 2010; 46: 245
  • 53 Soldatenkov AT, Soldatova SA, Mamyrbekova-Bekro JA, Gimranova GS, Malkova AV, Polyanskii KB, Kolyadina NM, Khrustalev VN. Chem. Heterocycl. Compd. 2012; 48: 1332
  • 54 Orejarena Pacheco JC, Opatz T. J. Org. Chem. 2014; 79: 5182
  • 55 Enders D, Shilvock JP. Chem. Soc. Rev. 2000; 29: 359
  • 56 Opatz T. Synthesis 2009; 1941
  • 57 Bruylants P. Bull. Soc. Chim. Belg. 1924; 33: 467