Synthesis 2016; 48(18): 2911-2968
DOI: 10.1055/s-0035-1562090
review
© Georg Thieme Verlag Stuttgart · New York

Recent Developments in Asymmetric Allylic Amination Reactions

Rebecca L. Grange
a   Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON, K7L 3N6, Canada   Email: Andrew.Evans@chem.queensu.ca
,
Elizabeth A. Clizbe
b   Department of Chemistry, The University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
,
P. Andrew Evans*
a   Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON, K7L 3N6, Canada   Email: Andrew.Evans@chem.queensu.ca
› Author Affiliations
Further Information

Publication History

Received: 31 January 2016

Accepted after revision: 09 March 2016

Publication Date:
17 August 2016 (online)


Dedicated to Professor Steven V. Ley on the occasion of his recent 70th birthday.

Abstract

The asymmetric synthesis of allylic amines is an important research area in modern synthetic organic chemistry, primarily due to the inherent utility and ubiquity of this functional group in various synthetic intermediates and bioactive agents. For instance, a plethora of methods for the stereocontrolled construction of allylic amines now provides a vibrant array of strategies for the installation of this important functionality. This review highlights developments in the field since 1998 through the provision of the most important methods and their mechanistic aspects in order to provide insight into their current scope and limitations. Hence, we envisage it will be an essential guide to the current state-of-the-art for this important area, which highlights potential new opportunities for further developments.

1 Introduction

2 Allylic Substitution

2.1 Transition Metal Catalyzed via a π-Allyl Intermediate

2.2 Lewis Base Catalyzed

2.3 Azametallation/Elimination

2.4 Miscellaneous

3 Sigmatropic Rearrangements

3.1 [3,3]-Rearrangement

3.2 [2,3]-Rearrangement

3.3 Curtius Rearrangement

4 Amination of Alkenes

4.1 Hydroamination

4.2 Carboamination

4.3 Diamination

5 Wacker-Type Oxidative Amination

6 C–H Functionalization

7 Electrophilic Amination

8 Conclusions

 
  • References

  • 1 Hayashi T, Yamamoto A, Ito Y, Nishioka E, Miura H, Yanagi K. J. Am. Chem. Soc. 1989; 111: 6301
  • 2 Nag S, Batra S. Tetrahedron 2011; 67: 8959
  • 3 Determined by a search of the Reaxys database in September 2015
  • 4 Rice KC In Chemistry and Biology of Isoquinoline Alkaloids . Phillipson JD, Roberts MF, Zenk MH. Springer; Berlin: 1985: 191
    • 5a Berényi S, Csutorás C, Sipos A. Curr. Med. Chem. 2009; 16: 3215
    • 5b Kok GB, Scammells PJ. RSC Adv. 2012; 2: 11318
  • 6 Levene PA, Rothen A, Kuna M. J. Biol. Chem. 1937; 120: 777
  • 7 Sharpless KB, Hori T, Truesdale LK. Dietrich C. O. J. Am. Chem. Soc. 1976; 98: 269
  • 8 Cheikh RB, Chaabouni R, Laurent A, Mison P, Nafti A. Synthesis 1983; 685
  • 9 Johannsen M, Jørgensen KA. Chem. Rev. 1998; 98: 1689
  • 10 Determined by a search of the ISI Web of Knowledge database in September 2015 for the keyword ‘allylic amination’.
  • 11 Dugger RW, Ragan JA, Brown Ripin DH. Org. Process Res. Dev. 2005; 9: 253
  • 12 Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
  • 13 Mayr’s relationship between reaction rate and nucleophilicity and electrophilicity parameters predicts diffusion control for the interaction between a malonate anion and a palladium π-allyl complex but not for reactions between nitrogen pronucleophiles and palladium π-allyl complexes.
    • 14a Lucius R, Loos R, Mayr H. Angew. Chem. Int. Ed. 2002; 41: 91
    • 14b Breugst M, Tokuyasu T, Mayr H. J. Org. Chem. 2010; 75: 5250
    • 14c Phan TB, Nolte C, Kobayashi S, Ofial AR, Mayr H. J. Am. Chem. Soc. 2009; 131: 11392

      Ligands that react in ≥70% yield and with ≥90% enantiomeric excess with one amine and no attempts to expand the pronucleophile scope are reported. Phosphines:
    • 15a Jin M.-J, Kim S.-H, Lee S.-J, Kim Y.-M. Tetrahedron Lett. 2002; 43: 7409
    • 15b Zhao D, Ding K. Org. Lett. 2003; 5: 1349
    • 15c Birkholz M.-N, Dubrovina NV, Shuklov IA, Holz J, Paciello R, Waloch C, Breit B, Börner A. Tetrahedron: Asymmetry 2007; 18: 2055

    • Phosphites/diamidophosphites:
    • 15d Tsarev VN, Lyubimov SE, Shiryaev AA, Zheglov SV, Bondarev OG, Davankov VA, Kabro AA, Moiseev SK, Kalinin VN, Gavrilov KN. Eur. J. Org. Chem. 2004; 2214
    • 15e Meng X, Gao Y, Li X, Xu D. Catal. Commun. 2009; 10: 950
    • 15f Coll M, Pàmies O, Diéguez M. Org. Lett. 2014; 16: 1892
    • 15g Gavrilov KN, Zheglov SV, Gavrilov VK, Chuchelkin IV, Novikov IM, Shiryaev AA, Volov AN, Zamilatskov IA. Tetrahedron: Asymmetry 2014; 25: 1116

    • Ferrocenes:
    • 15h Deng W.-P, You S.-L, Hou X.-L, Dai L.-X, Yu Y.-H, Xia W, Sun J. J. Am. Chem. Soc. 2001; 123: 6508
    • 15i You S.-L, Hou X.-L, Dai L.-X, Yu Y.-H, Xia W. J. Org. Chem. 2002; 67: 4684
    • 15j Mancheño OG, Priego J, Cabrera S, Arrayás RG, Llamas T, Carretero JC. J. Org. Chem. 2003; 68: 3679
    • 15k Hu X.-P, Chen H.-L, Zheng Z. Adv. Synth. Catal. 2005; 347: 541
    • 15l Lam FL, Au-Yeung TT. L, Cheung HY, Kok SH. L, Lam WS, Wong KY, Chan AS. C. Tetrahedron: Asymmetry 2006; 17: 497
    • 15m Fukuzawa S, Yamamoto M, Hosaka M, Kikuchi S. Eur. J. Org. Chem. 2007; 5540
    • 15n Wu H, An Q, Liu D, Zhang W. Tetrahedron 2015; 5112

    • Phosphites:
    • 15o Diéguez M, Pàmies O, Claver C. Adv. Synth. Catal. 2005; 347: 1257
    • 15p Diéguez M, Pàmies O, Claver C. J. Org. Chem. 2005; 70: 3363
    • 15q Benetsky EB, Zheglov SV, Grishina TB, Macaev FZ, Bet LP, Davankov VA, Gavrilov KN. Tetrahedron Lett. 2007; 48: 8326
    • 15r Fernández F, Gual A, Claver C, Castillón S, Muller G, Gómez M. Eur. J. Inorg. Chem. 2010; 758

    • Miscellaneous:
    • 15s Evans DA, Campos KR, Tedrow JS, Michael FE, Gagné MR. J. Org. Chem. 1999; 64: 2994
    • 15t Yonehara K, Hashizume T, Mori K, Ohe K, Uemura S. J. Org. Chem. 1999; 64: 9374
    • 15u Dolhem F, Johansson MJ, Antonsson T, Kann N. Synlett 2006; 3389
    • 15v Benetskiy EB, Bolm C. Tetrahedron: Asymmetry 2011; 22: 373

      Ligands that react in ≥70% yield and with ≥90% enantiomeric excess with one amine and attempts to expand the pronucleo­phile scope resulted in reduced efficiencies or selectivities (i.e. ≤70% yield or ≤90% enantiomeric excess). Phosphines:
    • 16a Kodama H, Taiji T, Ohta T, Furukawa I. Synlett 2001; 385
    • 16b Nakano H, Okuyama Y, Yanagida M, Hongo H. J. Org. Chem. 2001; 66: 620
    • 16c Nakano H, Yokoyama J, Okuyama Y, Fujita R, Hongo H. Tetrahedron: Asymmetry 2003; 14: 2361
    • 16d Tollabi M, Framery E, Goux-Henry C, Sinou D. Tetrahedron: Asymmetry 2003; 14: 3329
    • 16e Nakano H, Takahashi K, Suzuki Y, Fujita R. Tetrahedron: Asymmetry 2005; 16: 609
    • 16f Imamoto T, Nishimura M, Koide A, Yoshida K. J. Org. Chem. 2007; 72: 7413
    • 16g Liu Z, Du H. Org. Lett. 2010; 12: 3054

    • Diamidophosphites:
    • 16h Gavrilov KN, Lyubimov SE, Zheglov SV, Benetsky EB, Petrovskii PV, Rastorguev EA, Grishina TB, Davankov VA. Adv. Synth. Catal. 2007; 349: 1085
    • 16i Gavrilov KN, Benetsky EB, Grishina TB, Zheglov SV, Rastorguev EA, Petrovskii PV, Macaev FZ, Davankov VA. Tetrahedron: Asymmetry 2007; 18: 2557
    • 16j Gavrilov KN, Zheglov SV, Vologzhanin PA, Maksimova MG, Safronov AS, Lyubimov SE, Davankov VA, Schäffner B, Börner A. Tetrahedron Lett. 2008; 49: 3120
    • 16k Lyubimov SE, Davankov VA, Gavrilov KN, Grishina TB, Rastorguev EA, Tyutyunov AA, Verbitskaya TA, Kalinin VN, Hey-Hawkins E. Tetrahedron Lett. 2010; 51: 1682
    • 16l Gavrilov KN, Zheglov SV, Rastorguev EA, Groshkin NN, Maksimova MG, Benetsky EB, Davankov VA, Reetz MT. Adv. Synth. Catal. 2010; 352: 2599

    • Miscellaneous:
    • 16m Breeden S, Wills M. J. Org. Chem. 1999; 64: 9735
    • 16n Nettekoven U, Widhalm M, Kalchhauser H, Kamer PC. J, van Leeuwen PW. N. M, Lutz M, Spek AL. J. Org. Chem. 2001; 66: 759
    • 16o Xu G, Gilbertson SR. Tetrahedron Lett. 2002; 43: 2811

      Ligands that react in ≥70% yield and with ≥90% enantiomeric excess with at least two different amines:
    • 17a Selvakumar K, Valentini M, Wörle M, Pregosin PS. Organometallics 1999; 18: 1207
    • 17b Popa D, Marcos R, Sayalero S, Vidal-Ferran A, Pericàs MA. Adv. Synth. Catal. 2009; 351: 1539
    • 17c Wang Y, Vaismaa MJ. P, Rissanen K, Franzén R. Eur. J. Org. Chem. 2012; 1569

    • A tert-butyl-substituted oxazoline gives similar results, see:
    • 17d Wang Y, Vaismaa MJ. P, Hämäläinen AM, Tois JE, Franzén R. Tetrahedron: Asymmetry 2011; 22: 524
    • 17e Hamada Y, Seto N, Takayanagi Y, Nakano T, Hara O. Tetrahedron Lett. 1999; 40: 7791
    • 17f Rabeyrin C, Sinou D. Tetrahedron: Asymmetry 2003; 14: 3891
    • 17g Wang Y, Ding K. J. Org. Chem. 2001; 66: 3238
    • 17h Faller JW, Wilt JC. Org. Lett. 2005; 7: 633
    • 17i Feng B, Cheng H.-G, Chen J.-R, Deng Q.-H, Lu L.-Q, Xiao W.-J. Chem. Commun. 2014; 50: 9550
    • 17j Priego J, Mancheño OG, Cabrera S, Arrayás RG, Llamas T, Carretero JC. Chem. Commun. 2002; 2512
    • 17k Lotz M, Kramer G, Knochel P. Chem. Commun. 2002; 2546
    • 17l Arrayás RG, Mancheño OG, Carretero JC. Chem. Commun. 2004; 1654
    • 17m Wu H, Xie F, Wang Y, Zhao X, Liu D, Zhang W. Org. Biomol. Chem. 2015; 13: 4248
    • 17n Constantieux T, Brunel J.-M, Labande A, Buono G. Synlett 1998; 49
    • 17o Takacs JM, Reddy DS, Moteki SA, Wu D, Palencia H. J. Am. Chem. Soc. 2004; 126: 4494
    • 17p Nemoto T, Masuda T, Akimoto Y, Fukuyama T, Hamada Y. Org. Lett. 2005; 7: 4447
    • 17q Nemoto T, Tamura S, Sakamoto T, Hamada Y. Tetrahedron: Asymmetry 2008; 19: 1751
    • 17r Liu Z, Cao Z, Du H. Org. Biomol. Chem. 2011; 9: 5369
  • 18 Trost BM, Malhotra S, Olson DE, Maruniak A, Du Bois J. J. Am. Chem. Soc. 2009; 131: 4190
  • 19 For enantioconvergent allylic amination of an aliphatic electrophile in unspecified yield with a pre-formed palladium/bisoxa­zolylphosphine complex, see: Yamagishi T, Ohnuki M, Kiyooka T, Masui D, Sato K, Yamaguchi M. Tetrahedron: Asymmetry 2003; 14: 3275
  • 20 Humphries ME, Clark BP, Regini S, Acemoglu L, Williams JM. J. Chirality 2003; 15: 190
  • 21 Trost BM, Calkins TL, Oertelt C, Zambrano J. Tetrahedron Lett. 1998; 39: 1713
  • 22 Sennhenn P, Gabler B, Helmchen G. Tetrahedron Lett. 1994; 35: 8595
  • 23 Kudis S, Helmchen G. Angew. Chem. Int. Ed. 1998; 37: 3047
  • 24 The C 2-symmetric ferrocenyl P,N-ligand 26 and a furanoside thioether-phosphite ligand provide comparable results for the cyclohexenol derivative. See refs. 17m and 15f, respectively.
  • 25 Uozumi Y, Tanaka H, Shibatomi K. Org. Lett. 2004; 6: 281
  • 26 Trost BM, Krische MJ, Berl V, Grenzer EM. Org. Lett. 2002; 4: 2005
    • 27a Bremberg U, Lutsenko S, Kaiser N.-F, Larhed M, Hallberg A, Moberg C. Synthesis 2000; 1004
    • 27b For the reaction of TMS-phthalimide with a bicyclic allylic lactone, see: Trost BM, Zhang T. Angew. Chem. Int. Ed. 2008; 47: 3759
  • 28 Trost BM, Oslob JD. J. Am. Chem. Soc. 1999; 121: 3057
  • 29 Zang Y, Ojima I. Tetrahedron Lett. 2015; 56: 3288
    • 30a Kakugawa K, Nemoto T, Kohno Y, Hamada Y. Synthesis 2011; 2540
    • 30b Nemoto T, Yamaguchi M, Kakugawa K, Harada S, Hamada Y. Adv. Synth. Catal. 2015; 357: 2547
  • 31 The monodentate phosphine ligand (–)-9-PBN (19), which was one of the leading ligands for the benchmark acyclic system (Table 1) also performs well with an aryl-substituted cyclohexenol derivative, see: Hamada Y, Sakaguchi K, Hatano K, Hara O. Tetrahedron Lett. 2001; 42: 1297
  • 32 A C 2-symmetric derivative of ferrocenyl ligand 26 also provides good results for both cyclic and acyclic π-allyl complexes, see ref. 17m.
  • 33 A diamidophosphite ligand is also effective with both cyclic and acyclic substrates, see: Gavrilov KN, Zheglov SV, Gavrilov VK, Maksimova MG, Zamilatskov IA. Russ. Chem. Bull. 2015; 64: 967
  • 34 Kawatsura M, Terasaki S, Minakawa M, Hirakawa T, Ikeda K, Itoh T. Org. Lett. 2014; 16: 2442
  • 35 Quan M, Butt N, Shen J, Shen K, Liu D, Zhang W. Org. Biomol. Chem. 2013; 11: 7412
    • 36a Takahashi T, Jinbo Y, Kitamura K, Tsuji J. Tetrahedron Lett. 1984; 25: 5921
    • 36b Granberg KL, Bäckvall J.-E. J. Am. Chem. Soc. 1992; 114: 6858
    • 36c Trost BM, Toste FD. J. Am. Chem. Soc. 2003; 125: 3090
    • 36d Gais H.-J, Bondarev O, Hetzer R. Tetrahedron Lett. 2005; 46: 6279
  • 37 You S.-L, Zhu X.-Z, Luo Y.-M, Hou X.-L, Dai L.-X. J. Am. Chem. Soc. 2001; 123: 7471
  • 38 Zheng W.-H, Sun N, Hou X.-L. Org. Lett. 2005; 7: 5151
  • 39 Wang X, Meng F, Wang Y, Han Z, Chen Y.-J, Liu L, Wang Z, Ding K. Angew. Chem. Int. Ed. 2012; 51: 9276
  • 40 Wang X, Guo P, Han Z, Wang X, Wang Z, Ding K. J. Am. Chem. Soc. 2014; 136: 405
  • 41 Trost BM, Jiang C, Hammer K. Synthesis 2005; 3335
  • 42 Trost BM, Bunt RC, Lemoine RC, Calkins TL. J. Am. Chem. Soc. 2000; 122: 5968
  • 43 Alibés R, Bayón P, de March P, Figueredo M, Font J, García-García E, González-Gálvez D. Org. Lett. 2005; 7: 5107
  • 44 González-Gálvez D, García-García E, Alibés R, Bayón P, de March P, Figueredo M, Font J. J. Org. Chem. 2009; 74: 6199
  • 45 Trost BM, Fandrick DR, Brodmann T, Styles DT. Angew. Chem. Int. Ed. 2007; 46: 6123
  • 46 Mangion I, Strotman N, Drahl M, Imbriglio J, Guidry E. Org. Lett. 2009; 11: 3258
    • 47a Trost BM, Horne DB, Woltering MJ. Angew. Chem. Int. Ed. 2003; 42: 5987
    • 47b Trost BM, Horne DB, Woltering MJ. Chem. Eur. J. 2006; 12: 6607
    • 48a Trost BM, Fandrick DR. J. Am. Chem. Soc. 2003; 125: 11836
    • 48b Trost BM, Fandrick DR. Org. Lett. 2005; 7: 823
  • 49 Vinylethylene carbonates can be used in place of aziridines and provide 4-vinyloxazolidinones in high yields and enantiomeric excess, see: Khan A, Xing J, Zhao J, Kan Y, Zhang W, Zhang YJ. Chem. Eur. J. 2015; 21: 120
  • 51 Welter C, Koch O, Lipowsky G, Helmchen G. Chem. Commun. 2004; 896
  • 52 Bartels B, Garćia-Yebra C, Rominger F, Helmchen G. Eur. J. Inorg. Chem. 2002; 2569
  • 53 Lafrance M, Roggen M, Carreira EM. Angew. Chem. Int. Ed. 2012; 51: 3470
  • 54 Roggen M, Carreira EM. J. Am. Chem. Soc. 2010; 132: 11917
  • 55 Lei T, Zhang H, Yang Y.-R. Tetrahedron Lett. 2015; 56: 5933
  • 56 Suetsugu S, Nishiguchi H, Tsukano C, Takemoto Y. Org. Lett. 2014; 16: 996
    • 57a Arnold JS, Nguyen HM. J. Am. Chem. Soc. 2012; 134: 8380
    • 57b Arnold JS, Cizio GT, Heitz DR, Nguyen HM. Chem. Commun. 2012; 48: 11531
    • 57c Arnold JS, Nguyen HM. Synthesis 2013; 45: 2101
    • 57d Arnold JS, Mwenda ET, Nguyen HM. Angew. Chem. Int. Ed. 2014; 53: 3688
  • 58 Kawatsura M, Uchida K, Terasaki S, Tsuji H, Minakawa M, Itoh T. Org. Lett. 2014; 16: 1470
  • 59 Helmchen G, Dahnz A, Dübon P, Schelwies M, Weihofen R. Chem. Commun. 2007; 675
    • 60a Takeuchi R, Kashio M. J. Am. Chem. Soc. 1998; 120: 8647
    • 60b Takeuchi R, Ue N, Tanabe K, Yamashita K, Shiga N. J. Am. Chem. Soc. 2001; 123: 9525
  • 61 Weak, attractive non-covalent interactions involving a vinylic C–H bond of the COD ligand may be responsible for high branched regioselectivities observed in iridium-catalyzed allylic substitution reactions, see: Madrahimov ST, Li Q, Sharma A, Hartwig JF. J. Am. Chem. Soc. 2015; 137: 14968
  • 62 Ohmura T, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 15164
    • 63a Tissot-Croset K, Polet D, Alexakis A. Angew. Chem. Int. Ed. 2004; 43: 2426
    • 63b Polet D, Alexakis A, Tissot-Croset K, Corminboeuf C, Ditrich K. Chem. Eur. J. 2006; 12: 3596
  • 64 Spiess S, Welter C, Franck G, Taquet J.-P, Helmchen G. Angew. Chem. Int. Ed. 2008; 47: 7652
  • 65 Ye K.-Y, Zhao Z.-A, Lai Z.-W, Dai L.-X, You S.-L. Synthesis 2013; 45: 2109
  • 66 Malakar CC, Helmchen G. Chem. Eur. J. 2015; 21: 7127
  • 67 Leitner A, Shekhar S, Pouy MJ, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 15506
  • 68 Nemoto T, Sakamoto T, Matsumoto T, Hamada Y. Tetrahedron Lett. 2006; 47: 8737
  • 69 Krausová Z, Sehnal P, Bondzic BP, Chercheja S, Eilbracht P, Stará IG, Šaman D, Starý I. Eur. J. Org. Chem. 2011; 3849
  • 70 Hoecker J, Rudolf GC, Bächle F, Fleischer S, Lindner BD, Helmchen G. Eur. J. Org. Chem. 2013; 5149
  • 71 Leitner A, Shu C, Hartwig JF. Org. Lett. 2005; 7: 1093
  • 72 Gnamm C, Franck G, Miller N, Stork T, Brödner K, Helmchen G. Synthesis 2008; 3331
  • 73 Kiener CA, Shu C, Incarvito C, Hartwig JF. J. Am. Chem. Soc. 2003; 125: 14272
    • 74a Shu C, Leitner A, Hartwig JF. Angew. Chem. Int. Ed. 2004; 43: 4797
    • 74b Satyanarayana G, Pflästerer D, Helmchen G. Eur. J. Org. Chem. 2011; 6877
    • 74c Raskatov JA, Jäkel M, Straub BF, Rominger F, Helmchen G. Chem. Eur. J. 2012; 18: 14314
    • 74d Ye K.-Y, Dai L.-X, You S.-L. Org. Biomol. Chem. 2012; 10: 5932
    • 74e Ye K.-Y, Dai L.-X, You S.-L. Chem. Eur. J. 2014; 20: 3040
  • 75 Stanley LM, Hartwig JF. J. Am. Chem. Soc. 2009; 131: 8971
  • 76 Stanley LM, Hartwig JF. Angew. Chem. Int. Ed. 2009; 48: 7841
  • 77 Zhang X, Yang Z.-P, Huang L, You S.-L. Angew. Chem. Int. Ed. 2015; 54: 1873
  • 78 Welter C, Moreno RM, Streiff S, Helmchen G. Org. Biomol. Chem. 2005; 3: 3266
  • 79 Dübon P, Farwick A, Helmchen G. Synlett 2009; 1413
  • 80 Hartwig JF, Pouy MJ. Top. Organomet. Chem. 2011; 34: 169
  • 81 Satyanarayana G, Helmchen G. Eur. J. Org. Chem. 2014; 2242
  • 82 Liu W.-B, Zhang X, Dai L.-X, You S.-L. Angew. Chem. Int. Ed. 2012; 51: 5183
  • 83 Farwick A, Engelhart JU, Tverskoy O, Welter C, Umlauf QA, Rominger F, Kerr WJ, Helmchen G. Adv. Synth. Catal. 2011; 353: 349
  • 84 Farwick A, Helmchen G. Org. Lett. 2010; 12: 1108
  • 85 Spiess S, Berthold C, Weihofen R, Helmchen G. Org. Biomol. Chem. 2007; 5: 2357
  • 86 Bondzic BP, Farwick A, Liebich J, Eilbracht P. Org. Biomol. Chem. 2008; 6: 3723
  • 87 Yamashita Y, Gopalarathnam A, Hartwig JF. J. Am. Chem. Soc. 2007; 129: 7508
  • 88 Sharma A, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 17983
    • 89a Weihofen R, Tverskoy O, Helmchen G. Angew. Chem. Int. Ed. 2006; 45: 5546
    • 89b Gärtner M, Weihofen R, Helmchen G. Chem. Eur. J. 2011; 17: 7605
  • 90 Singh OV, Han H. Tetrahedron Lett. 2007; 48: 7094
  • 91 Gärtner M, Qu J, Helmchen G. J. Org. Chem. 2012; 77: 1186
  • 92 Replacing [Ir(COD)Cl]2 with [Ir(dbcot)Cl]2 improves the regio- and enantioseletivity slightly, see: Seehafer K, Malakar CC, Bender M, Qu J, Liang C, Helmchen G. Eur. J. Org. Chem. 2016; 493
  • 93 Pouy MJ, Leitner A, Weix DJ, Ueno S, Hartwig JF. Org. Lett. 2007; 9: 3949
  • 94 Weix DJ, Marković D, Ueda M, Hartwig JF. Org. Lett. 2009; 11: 2944
  • 95 Gärtner M, Jäkel M, Achatz M, Sonnenschein C, Tverskoy O, Helmchen G. Org. Lett. 2011; 13: 2810
  • 96 Miyabe H, Matsumura A, Moriyama K, Takemoto Y. Org. Lett. 2004; 6: 4631
  • 97 Zheng B.-H, Ding C.-H, Hou X.-L. Synlett 2011; 2262
  • 98 Grange RL, Clizbe EA, Counsell EJ, Evans PA. Chem. Sci. 2015; 6: 777
  • 99 Grange RL, Evans PA. J. Am. Chem. Soc. 2014; 136: 11870
  • 100 Pouy MJ, Stanley LM, Hartwig JF. J. Am. Chem. Soc. 2009; 131: 11312
    • 101a Tosatti P, Horn J, Campbell AJ, House D, Nelson A, Marsden SP. Adv. Synth. Catal. 2010; 352: 3153
    • 101b Tosatti P, Campbell AJ, House D, Nelson A, Marsden SP. J. Org. Chem. 2011; 76: 5495
    • 101c Ichikawa Y, Yamamoto S.-I, Kotsuki H, Nakano K. Synlett 2009; 2281
    • 101d Lee JS, Kim D, Lozano L, Kong SB, Han H. Org. Lett. 2013; 15: 554
  • 102 Welter C, Dahnz A, Brunner B, Streiff S, Dübon P, Helmchen G. Org. Lett. 2005; 7: 1239
  • 103 Olszewska B, Kryczka B, Zawisza A. Tetrahedron 2013; 69: 9551
  • 104 Teichert JF, Fañanás-Mastral M, Feringa BL. Angew. Chem. Int. Ed. 2011; 50: 688
  • 105 Seki T, Tanaka S, Kitamura M. Org. Lett. 2012; 14: 608
  • 106 Trost BM, Machacek MR. Angew. Chem. Int. Ed. 2002; 41: 4693
    • 107a Gnamm C, Brödner K, Krauter CM, Helmchen G. Chem. Eur. J. 2009; 15: 10514
    • 107b Gnamm C, Krauter CM, Brödner K, Helmchen G. Chem. Eur. J. 2009; 15: 2050
    • 107c Natori Y, Kikuchi S, Kondo T, Saito Y, Yoshimura Y, Takahata H. Org. Biomol. Chem. 2014; 12: 1983
  • 108 Ito K, Akashi S, Saito B, Katsuki T. Synlett 2003; 1809
  • 109 Lin C.-F, Ojima I. J. Org. Chem. 2011; 76: 6240
  • 110 Shi C, Ojima I. Tetrahedron 2007; 63: 8563
  • 111 Chien C.-W, Shi C, Lin C.-F, Ojima I. Tetrahedron 2011; 67: 6513
  • 112 Miyata K, Kutsuna H, Kawakami S, Kitamura M. Angew. Chem. Int. Ed. 2011; 50: 4649
    • 113a He H, Liu W.-B, Dai L.-X, You S.-L. Angew. Chem. Int. Ed. 2010; 49: 1496
    • 113b Ye K.-Y, He H, Liu W.-B, Dai L.-X, Helmchen G, You S.-L. J. Am. Chem. Soc. 2011; 133: 19006
  • 114 Singh OV, Han H. J. Am. Chem. Soc. 2007; 129: 774
  • 115 Tsukanov SV, Comins DL. Angew. Chem. Int. Ed. 2011; 50: 8626
  • 116 For an example of azetidine formation via palladium-catalyzed intramolecular allylic substitution with modest diastereocontrol, see: Wei X, Liu D, An Q, Zhang W. Org. Lett. 2015; 17: 5768
  • 117 Stragies R, Blechert S. J. Am. Chem. Soc. 2000; 122: 9584
  • 118 Trost BM, Dong G. J. Am. Chem. Soc. 2006; 128: 6054
  • 119 Trost BM, Aponick A. J. Am. Chem. Soc. 2006; 128: 3931
  • 120 Trost BM, Burns AC, Tautz T. Org. Lett. 2011; 13: 4566
  • 121 Trost BM, Dudash JJr, Hembre E. Chem. Eur. J. 2001; 7: 1619
  • 122 Trost BM, Patterson DE. J. Org. Chem. 1998; 63: 1339
  • 123 Trost BM, Pan Z, Zambrano J, Kujat C. Angew. Chem. Int. Ed. 2002; 41: 4691
  • 124 Trost BM, Patterson DE. Chem. Eur. J. 1999; 5: 3279
  • 125 Zhao D, Neubauer TM, Feringa BL. Nat. Commun. 2015; 6: 6652
  • 126 Evans PA, Nelson JD. J. Am. Chem. Soc. 1998; 120: 5581
  • 127 Evans PA, Robinson JE, Nelson JD. J. Am. Chem. Soc. 1999; 121: 6761
  • 128 Evans PA, Robinson JE, Moffett KK. Org. Lett. 2001; 3: 3269
  • 129 Evans PA, Lai KW, Zhang H.-R, Huffman JC. Chem. Commun. 2006; 844
  • 130 Evans PA, Clizbe EA. J. Am. Chem. Soc. 2009; 131: 8722
  • 131 Conservation of enantiomeric excess (cee) = (ee of product/ee of starting material) × 100.
  • 132 Elimination to form 1-phenylbuta-1,3-diene has been observed with benzyl-substituted allylic alcohol derivatives in the presence of iridium complexes, see ref. 145. For an example of an enantioselective iridium-catalyzed allylic substitution with a benzyl-substituted electrophile, see ref. 88.
  • 133 Evans PA, Robinson JE. Org. Lett. 1999; 1: 1929
  • 134 Evans PA, Qin J, Robinson JE, Bazin B. Angew. Chem. Int. Ed. 2007; 46: 7417
  • 135 Ozawa F, Okamoto H, Kawagishi S, Yamamoto S, Minami T, Yoshifuji M. J. Am. Chem. Soc. 2002; 124: 10968
  • 136 Hirakawa T, Ikeda K, Ogasa H, Kawatsura M, Itoh T. Synlett 2010; 2887
  • 137 Trost BM, Lee CB. J. Am. Chem. Soc. 2001; 123: 3687
  • 138 Cardillo G, Gentilucci L, Mosconi E, Tolomelli A, Troisi S, Juaristi E. Tetrahedron 2010; 66: 4994
  • 139 Sugiura M, Yagi Y, Wei S.-Y, Nakai T. Tetrahedron Lett. 1998; 39: 4351
  • 140 Shing TK. M, Kwong CS. K, Cheung AW. C, Kok SH.-L, Yu Z, Li J, Cheng CH. K. J. Am. Chem. Soc. 2004; 126: 15990
  • 141 For another example of a diastereospecific palladium-catalyzed allylic substitution involving carbohydrates, see: Cumpstey I, Ramstadius C, Borbas KE. Synlett 2011; 1701
  • 142 Verhelst SH. L, Wiedenhof W, Ovaa H, van der Marel GA, Overkleeft HS, van Boeckel CA. A, van Boom JH. Tetrahedron Lett. 2002; 43: 6451
  • 143 Srikanth G, Ramakrishna KV. S, Sharma GV. M. Org. Lett. 2015; 17: 4576
  • 144 Plietker B. Angew. Chem. Int. Ed. 2006; 45: 6053
  • 145 Singh OV, Han H. Org. Lett. 2007; 9: 4801
  • 146 Lee JH, Lee S. Chem. Sci. 2013; 4: 2922
  • 147 Zhang M, Watanabe K, Tsukamoto M, Shibuya R, Morimoto H, Ohshima T. Chem. Eur. J. 2015; 21: 3937
    • 148a Rios R. Catal. Sci. Technol. 2012; 2: 267
    • 148b Liu T.-Y, Xie M, Chen Y.-C. Chem. Soc. Rev. 2012; 41: 4101
  • 149 Sun W, Ma X, Hong L, Wang R. J. Org. Chem. 2011; 76: 7826
  • 150 Deng H.-P, Wei Y, Shi M. Eur. J. Org. Chem. 2011; 1956
  • 151 Pei C.-K, Zhang X.-C, Shi M. Eur. J. Org. Chem. 2011; 4479
  • 152 Zhao M.-X, Chen M.-X, Tang W.-H, Wei D.-K, Dai T.-L, Shi M. Eur. J. Org. Chem. 2012; 3598
  • 153 Yao L, Wang C.-J. Adv. Synth. Catal. 2015; 357: 384
  • 154 A cyclohexane-based thiourea-phosphine organocatalyst is also effective in the enantioconvergent allylic amination reaction involving phthalimide as the pronucleophile, see: Zhao X, Kang T, Shen J, Sha F, Wu X. Chin. J. Chem. 2015; 33: 1333
  • 155 Huang L, Wei Y, Shi M. Org. Biomol. Chem. 2012; 10: 1396
  • 156 Zhang H, Zhang S.-J, Zhou Q.-Q, Dong L, Chen Y.-C. Beilstein J. Org. Chem. 2012; 8: 1241
  • 157 Kobbelgaard S, Brandes S, Jørgensen KA. Chem. Eur. J. 2008; 14: 1464
  • 158 Martelli G, Orena M, Rinaldi S. Eur. J. Org. Chem. 2011; 7199
  • 159 McDonald RI, Liu G, Stahl SS. Chem Rev. 2011; 111: 2981
  • 160 Overman LE, Remarchuk TP. J. Am. Chem. Soc. 2002; 124: 12
  • 161 Kirsch SF, Overman LE. J. Org. Chem. 2005; 70: 2859
  • 162 Yamamoto H, Ho E, Namba K, Imagawa H, Nishizawa M. Chem. Eur. J. 2010; 16: 11271
  • 163 Mukherjee P, Widenhoefer RA. Angew. Chem. Int. Ed. 2012; 51: 1405
  • 164 Mukherjee P, Widenhoefer RA. Org. Lett. 2011; 13: 1334
  • 165 Hande SM, Kawai N, Uenishi J. J. Org. Chem. 2009; 74: 244
  • 166 Mukherjee P, Widenhoefer RA. Org. Lett. 2010; 12: 1184
    • 167a Benfatti F, Cardillo G, Gentilucci L, Mosconi E, Tolomelli A. Org. Lett. 2008; 10: 2425
    • 167b Cardillo G, Gennari A, Gentilucci L, Mosconi E, Tolomelli A, Troisi S. Eur. J. Org. Chem. 2009; 5991
  • 168 Li QR, Dong GR, Park SJ, Hong YR, Kim IS, Jung YH. Eur. J. Org. Chem. 2013; 4427
  • 169 Kim IS, Jung YH. Heterocycles 2011; 83: 2489
  • 170 Li QR, Kim SI, Park SJ, Yang HR, Baek AR, Kim IS, Jung YH. Tetrahedron 2013; 69: 10384
  • 171 Lee SH, Kim IS, Li QR, Dong GR, Jeong LS, Jung YH. J. Org. Chem. 2011; 76: 10011
  • 172 Kawai N, Abe R, Uenishi J. Tetrahedron Lett. 2009; 50: 6580
  • 173 Timoshenko MA, Kharitonov YV, Shakirov MM, Bagryanskaya I, Shults EE. ChemistryOpen 2016; 5: 65
  • 174 Tsui GC, Ninnemann NM, Hosotani A, Lautens M. Org. Lett. 2013; 15: 1064
  • 175 Kuroda Y, Harada S, Oonishi A, Yamaoka Y, Yamada K, Takasu K. Angew. Chem. Int. Ed. 2015; 54: 8263
  • 176 Zhuang M, Du H. Org. Biomol. Chem. 2014; 12: 4590
  • 177 Chen YK, Lurain AE, Walsh PJ. J. Am. Chem. Soc. 2002; 124: 12225
    • 178a Lalic G, Blum SA, Bergman RG. J. Am. Chem. Soc. 2005; 127: 16790
    • 178b Lalic G, Krinsky JL, Bergman RG. J. Am. Chem. Soc. 2008; 130: 4459
  • 179 Ichikawa Y, Matsuda Y, Okumura K, Nakamura M, Masuda T, Kotsuki H, Nakano K. Org. Lett. 2011; 13: 2520
  • 180 Chen A, Thomas EJ, Wilson PD. J. Chem. Soc., Perkin Trans. 1 1999; 3305
  • 181 For another example of a diastereospecific [3,3]-sigmatropic rearrangement involving an allylic trifluoroacetimidate, see: Savage I, Thomas EJ, Wilson PD. J. Chem. Soc., Perkin Trans. 1 1999; 3291
  • 182 Yang J, Mercer GJ, Nguyen HM. Org. Lett. 2007; 9: 4231

    • For additional examples of diastereospecific [3,3]-sigmatropic rearrangements involving allylic trichloroacetimidates, see:
    • 183a Fernández de la Pradilla R, Colomer I, Viso A. Org. Lett. 2012; 14: 3068
    • 183b Takahashi K, Yamaguchi D, Ishihara J, Hatakeyama S. Org. Lett. 2012; 14: 1644
    • 183c Xu C, Liu Z, Wang H, Zhang B, Xiang Z, Hao X, Wang DZ. Org. Lett. 2011; 13: 1812
    • 183d Amann F, Frank M, Rhodes R, Robinson A, Kesselgruber M, Abele S. Org. Process Res. Dev. 2016; 20: 446
  • 184 Kitamoto K, Nakayama Y, Sampei M, Ichiki M, Furuya N, Sato T, Chida N. Eur. J. Org. Chem. 2012; 4217
  • 185 Tsuzaki S, Usui S, Oishi H, Yasushima D, Fukuyasu T, Oishi T, Sato T, Chida N. Org. Lett. 2015; 17: 1704
  • 186 Calder ED. D, Zaed AM, Sutherland A. J. Org. Chem. 2013; 78: 7223

    • For additional examples of diastereospecific [3,3]-sigmatropic rearrangements involving allylic cyanates, see:
    • 187a Ichikawa Y, Ito T, Nishiyama T, Isobe M. Synlett 2003; 1034
    • 187b Ichikawa Y, Ito T, Isobe M. Chem. Eur. J. 2005; 11: 1949
    • 187c Ichikawa Y, Matsunaga K, Masuda T, Kotsuki H, Nakano K. Tetrahedron 2008; 64: 11313
    • 187d Roy S, Spino C. Org. Lett. 2006; 8: 939
  • 188 Ichikawa Y, Yamaoka T, Nakano K, Kotsuki H. Org. Lett. 2007; 9: 2989
  • 189 Gagnon D, Lauzon S, Godbout C, Spino C. Org. Lett. 2005; 7: 4769
    • 190a Overman LE, Carpenter NE. Org. React. 2005; 66: 1
    • 190b Nomura H, Richards CJ. Chem. Asian J. 2010; 5: 1726
    • 190c Jautze S, Peters R. In Science of Synthesis. Vol 3. Molander GA, Evans PA. Georg Thieme; Stuttgart: 2011: 443
    • 191a Donde Y, Overman LE. J. Am. Chem. Soc. 1999; 121: 2933
    • 191b Anderson CE, Donde Y, Douglas CJ, Overman LE. J. Org. Chem. 2005; 70: 648
  • 192 Kang J, Yew KH, Kim TH, Choi DH. Tetrahedron Lett. 2002; 43: 9509
  • 193 Anderson CE, Overman LE. J. Am. Chem. Soc. 2003; 125: 12412
  • 194 Nomura H, Richards CJ. Chem. Eur. J. 2007; 13: 10216
  • 195 Overman LE, Owen CE, Pavan MM. Org. Lett. 2003; 5: 1809
  • 196 Fischer DF, Barakat A, Xin Z.-q, Weiss ME, Peters R. Chem. Eur. J. 2009; 15: 8722
  • 197 Hellmuth T, Rieckhoff S, Weiss M, Dorst K, Frey W, Peters R. ACS Catal. 2014; 4: 1850
  • 198 Xin Z.-q, Fischer DF, Peters R. Synlett 2008; 1495

    • See also:
    • 199a Weiss ME, Fischer DF, Xin Z.-q, Jautze S, Schweizer WB, Peters R. Angew. Chem. Int. Ed. 2006; 45: 5694
    • 199b Jautze S, Seiler P, Peters R. Angew. Chem. Int. Ed. 2007; 46: 1260
  • 200 A mixed pallada-/platinacycle is also effective at 0.05 mol% loadings, see: Weiss M, Frey W, Peters R. Organometallics 2012; 31: 6365
  • 201 Eitel SH, Bauer M, Schweinfurth D, Deibel N, Sarkar B, Kelm H, Krüger H.-J, Frey W, Peters R. J. Am. Chem. Soc. 2012; 134: 4683
  • 202 Bauer JM, Peters R. Catal. Sci. Technol. 2015; 5: 2340
  • 203 Jiang G, Halder R, Fang Y, List B. Angew. Chem. Int. Ed. 2011; 50: 9752
  • 204 Lee EE, Batey RA. J. Am. Chem. Soc. 2005; 127: 14887
  • 205 Rodrigues A, Lee EE, Batey RA. Org. Lett. 2010; 12: 260
  • 206 Bauer JM, Frey W, Peters R. Angew. Chem. Int. Ed. 2014; 53: 7634
  • 207 Fischer DF, Xin Z.-q, Peters R. Angew. Chem. Int. Ed. 2007; 46: 7704
  • 208 [PPFOP-Cl]2 (318) displays superior activity, albeit for a smaller range of trifluoroacetimidates; see ref. 196.
  • 209 Jamieson AG, Sutherland A. Org. Biomol. Chem. 2006; 4: 2932
  • 210 Rajasekaran P, Ansari AA, Vankar YD. Eur. J. Org. Chem. 2015; 2902
  • 211 Gonda J, Maliňák D, Kováčová M, Martinková M. Tetrahedron Lett. 2013; 54: 6768
  • 212 Chavan SP, Garai S, Dey C, Gonnade RG. Tetrahedron Lett. 2013; 54: 5562
  • 213 West TH, Spoehrle SM, Kasten K, Taylor JE, Smith AD. ACS Catal. 2015; 5: 7446
  • 214 Shea RG, Fitzner JN, Fankhauser JE, Spaltenstein A, Carpino PA, Peevey RM, Pratt DV, Tenge BJ, Hopkins PB. J. Org. Chem. 1986; 51: 5243
  • 215 Armstrong A, Challinor L, Moir JH. Angew. Chem. Int. Ed. 2007; 46: 5369
  • 216 Armstrong A, Challinor L, Cooke RS, Moir JH, Treweeke NR. J. Org. Chem. 2006; 71: 4028
  • 217 Waetzig SR, Tunge JA. Chem. Commun. 2008; 3311
  • 218 Armstrong A, Emmerson DP. G. Org. Lett. 2011; 13: 1040
  • 219 Ishikawa T, Kawakami M, Fukui M, Yamashita A, Urano J, Saito S. J. Am. Chem. Soc. 2001; 123: 7734
    • 221a Honda T, Koizumi T, Komatsuzaki Y, Yamashita R, Kanai K, Nagase H. Tetrahedron: Asymmetry 1999; 10: 2703
    • 221b Ravn MM, Peters RJ, Coates RM, Croteau R. J. Am. Chem. Soc. 2002; 124: 6998
    • 222a Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M. Chem. Rev. 2008; 108: 3795
    • 222b Reznichenko AL, Hultzsch KC In Chiral Amine Synthesis . Nugent TC. Wiley-VCH; Weinheim: 2010: 341
    • 222c Reznichenko AL, Hultzsch KC. Org. React. 2015; 88: 1
  • 223 The C=C bond of an allene is approximately 10 kcal/mol less stable than the C=C bond of a simple alkene
  • 224 Löber O, Kawatsura M, Hartwig JF. J. Am. Chem. Soc. 2001; 123: 4366
  • 225 LaLonde RL, Sherry BD, Kang EJ, Toste FD. J. Am. Chem. Soc. 2007; 129: 2452
  • 226 Hamilton GL, Kang EJ, Mba M, Toste FD. Science 2007; 317: 496
  • 227 Zhang Z, Bender CF, Widenhoefer RA. Org. Lett. 2007; 9: 2887
  • 228 Cooke ML, Xu K, Breit B. Angew. Chem. Int. Ed. 2012; 51: 10876
  • 229 Xu K, Thieme N, Breit B. Angew. Chem. Int. Ed. 2014; 53: 2162

    • For examples highlighting the challenges of reacting ambident nitrogen heterocycle pronucleophiles with palladium π-allyl complexes, see:
    • 230a Trost BM, Madsen R, Guile SD, Brown B. J. Am. Chem. Soc. 2000; 122: 5947
    • 230b Liu W, Zhang D, Zheng S, Yue Y, Liu D, Zhao X. Eur. J. Org. Chem. 2011; 6288
  • 231 Haydl AM, Xu K, Breit B. Angew. Chem. Int. Ed. 2015; 54: 7149
  • 232 Li C, Kähny M, Breit B. Angew. Chem. Int. Ed. 2014; 53: 13780
  • 233 Ackermann L, Althammer A. Synlett 2008; 995
  • 234 Shapiro ND, Rauniyar V, Hamilton GL, Wu J, Toste FD. Nature 2011; 470: 245
  • 235 Lutete LM, Kadota I, Yamamoto Y. J. Am. Chem. Soc. 2004; 126: 1622
  • 236 Chen Q.-A, Chen Z, Dong VM. J. Am. Chem. Soc. 2015; 137: 8392
  • 237 Fang Y.-Q, Tadross PM, Jacobsen EN. J. Am. Chem. Soc. 2014; 136: 17966
  • 238 Nishina N, Yamamoto Y. Tetrahedron 2009; 65: 1799
  • 239 Zhang Z, Bender CF, Widenhoefer RA. J. Am. Chem. Soc. 2007; 129: 14148
  • 240 Butler KL, Tragni M, Widenhoefer RA. Angew. Chem. Int. Ed. 2012; 51: 5175
  • 241 Wolfe JP. Top. Heterocycl. Chem. 2013; 32: 1
  • 242 Beccalli EM, Broggini G, Clerici F, Galli S, Kammerer C, Rigamonti M, Sottocornola S. Org. Lett. 2009; 11: 1563
  • 243 Liu J, Han Z, Wang X, Wang Z, Ding K. J. Am. Chem. Soc. 2015; 137: 15346
  • 244 MacMillan DW. C, Rendler S In Asymmetric Synthesis: More Methods and Applications . 1st ed.; Christmann M, Bräse S. Wiley-VCH; Weinheim: 2012: 87
  • 245 Jui NT, Garber JA. O, Finelli FG, MacMillan DW. C. J. Am. Chem. Soc. 2012; 134: 11400
  • 246 Du H, Yuan W, Zhao B, Shi Y. J. Am. Chem. Soc. 2007; 129: 11688
  • 247 Du H, Zhao B, Shi Y. J. Am. Chem. Soc. 2008; 130: 8590
  • 248 Cornwall RG, Zhao B, Shi Y. Org. Lett. 2013; 15: 796
  • 249 Ye X, Liu G, Popp BV, Stahl SS. J. Org. Chem. 2011; 76: 1031
  • 250 McDonald RI, White PB, Weinstein AB, Tam CP, Stahl SS. Org. Lett. 2011; 13: 2830
  • 251 Weinstein AB, Stahl SS. Angew. Chem. Int. Ed. 2012; 51: 11505
  • 252 Yang G, Shen C, Zhang W. Angew. Chem. Int. Ed. 2012; 51: 9141
  • 253 Redford JE, McDonald RI, Rigsby ML, Wiensch JD, Stahl SS. Org. Lett. 2012; 14: 1242
  • 254 Weinstein AB, Schuman DP, Tan ZX, Stahl SS. Angew. Chem. Int. Ed. 2013; 52: 11867
  • 255 Strambeanu II, White MC. J. Am. Chem. Soc. 2013; 135: 12032
  • 256 Fraunhoffer KJ, White MC. J. Am. Chem. Soc. 2007; 129: 7274
  • 257 Exclusive formation of the anti diastereomer is observed in a more complex setting, see: Qi X, Rice GT, Lall MS, Plummer MS, White MC. Tetrahedron 2010; 66: 4816
  • 258 Rice GT, White MC. J. Am. Chem. Soc. 2009; 131: 11707
    • 259a Nahra F, Liron F, Prestat G, Mealli C, Messaoudi A, Poli G. Chem. Eur. J. 2009; 15: 11078
    • 259b See also: Chen MS, Prabagaran N, Labenz NA, White MC. J. Am. Chem. Soc. 2005; 127: 6970
    • 260a Liang C, Collet F, Robert-Peillard F, Müller P, Dodd RH, Dauban P. J. Am. Chem. Soc. 2008; 130: 343
    • 260b Darses B, Jarvis AG, Mafroud A.-K, Estenne-Bouhtou G, Dargazanli G, Dauban P. Synthesis 2013; 45: 2079
  • 261 Sun J, Wang Y, Pan Y. J. Org. Chem. 2015; 80: 8945
  • 262 Milczek E, Boudet N, Blakey S. Angew. Chem. Int. Ed. 2008; 47: 6825
  • 263 Nishioka Y, Uchida T, Katsuki T. Angew. Chem. Int. Ed. 2013; 52: 1739
  • 264 Poulsen TB, Alemparte C, Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 11614
  • 265 Wang J, Chen J, Kee CW, Tan C.-H. Angew. Chem. Int. Ed. 2012; 51: 2382