Synlett 2022; 33(07): 609-616
DOI: 10.1055/s-0041-1737323
synpacts

Stereoselective Michael Additions of Arylacetic Acid Derivatives by Asymmetric Organocatalysis

Byungjun Kim
,
Yongjae Kim
,
This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2021R1A2C4001752).


Abstract

Because of the versatility of chiral 1,5-dicarbonyl structural motifs, the development of stereoselective Michael additions of arylacetic acid derivatives to electron-deficient alkenes is an important challenge. Over recent decades, an array of enantio- and diastereoselective methods of this type have been developed through the use of chiral organocatalysts. In this article, three distinct strategies in this research area are highlighted. Catalytic generation of either a chiral iminium electrophile (iminium catalysis) or a chiral enolate nucleophile (Lewis­ base catalysis) has allowed the efficient construction of stereogenic C–C bonds. We also introduce a synergistic catalytic approach involving the merger of these two catalytic cycles that provides selective access to all four stereoisomers of products with vicinal stereocenters.

1 Introduction

2 Iminium Catalysis

3 Lewis Base Catalysis

4 Synergistic Organocatalysis

5 Summary



Publication History

Received: 11 November 2021

Accepted after revision: 29 November 2021

Article published online:
05 January 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Heravi MM, Dehghani M, Zadsirjan V. Tetrahedron: Asymmetry 2016; 27: 513
    • 1b Hui C, Pu F, Xu J. Chem. Eur. J. 2017; 23: 4023
    • 1c Hayashi M, Matsubara R. Tetrahedron Lett. 2017; 58: 1793
    • 1d Zheng K, Liu X, Feng X. Chem. Rev. 2018; 118: 7586
    • 1e Reznikov AN, Klimochkin YN. Synthesis 2020; 52: 781
    • 2a Tsogoeva SB. Eur. J. Org. Chem. 2007; 1701
    • 2b Sulzer-Mossé S, Alexakis A. Chem. Commun. 2007; 3123
    • 2c Zhang Y, Wang W. Catal. Sci. Technol. 2012; 2: 42
    • 2d Scheffler U, Mahrwald R. Chem. Eur. J. 2013; 19: 14346 ; corrigendum: Chem. Eur. J. 2013 19, 15794
    • 2e Mondal A, Bhowmick S, Ghosh A, Chanda T, Bhowmick KC. Tetrahedron: Asymmetry 2017; 28: 849
    • 2f Nguyen TN, May JA. Tetrahedron Lett. 2017; 58: 1535
    • 2g Alonso DA, Baeza A, Chinchilla R, Gómez C, Guillena G, Pastor IM, Ramón DJ. Molecules 2017; 22: 895
    • 4a Hardouin C, Kelso MJ, Romero FA, Rayl TJ, Leung D, Hwang I, Cravatt BF, Boger DL. J. Med. Chem. 2007; 50: 3359
    • 4b Huang A.-C, Sefton MA, Sumby CJ, Tiekink ER. T, Taylor DK. J. Nat. Prod. 2015; 78: 131
    • 5a Marigo M, Wabnitz TC, Fielenbach D, Jørgensen KA. Angew. Chem. Int. Ed. 2005; 44: 794
    • 5b Hayashi Y, Gotoh H, Hayashi T, Shoji M. Angew. Chem. Int. Ed. 2005; 44: 4212
    • 5c Jensen KL, Dickmeiss G, Jiang H, Albrecht Ł, Jørgensen KA. Acc. Chem. Res. 2012; 45: 248
    • 5d Reyes-Rodríguez GJ, Rezayee NM, Vidal-Albalat A, Jørgensen KA. Chem. Rev. 2019; 119: 4221

      For selected examples of the reactions with thioester nucleophiles, see:
    • 6a Alonso DA, Kitagaki S, Utsumi N, Barbas CF. III. Angew. Chem. Int. Ed. 2008; 47: 4588
    • 6b Duce S, Jorge M, Alonso I, García Ruano JL, Cid MB. Eur. J. Org. Chem. 2013; 7067
    • 6c Hayashi Y, Yamada T, Sato M, Watanabe S, Kwon E, Iwasaki K, Umemiya S. Org. Lett. 2019; 21: 5183

      For selected examples of the reactions with ketone nucleo­philes, see:
    • 7a Duce S, Jorge M, Alonso I, García Ruano JL, Cid MB. Org. Biomol. Chem. 2011; 9: 8253
    • 7b Guevara-Pulido JO, Andrés JM, Pedrosa R. J. Org. Chem. 2014; 79: 8638

      For selected examples of the reactions with ester nucleophiles, see:
    • 8a Duce S, Mateo A, Alonso I, García Ruano JL, Cid MB. Chem. Commun. 2012; 48: 5184
    • 8b Seo SW, Kim S.-G. Tetrahedron Lett. 2012; 53: 2809
  • 9 For selected example of the reactions with nitrile nucleophiles, see: Cid MB, Duce S, Morales S, Rodrigo E, García Ruano JL. Org. Lett. 2010; 12: 3586
  • 10 Duce S, Alonso I, Lamsabhi AM, Rodrigo E, Morales S, García Ruano JL, Poveda A, Mauleón P, Cid MB. ACS Catal. 2018; 8: 22
  • 12 Birman VB, Li X. Org. Lett. 2006; 8: 1351

    • For selected reviews, see:
    • 13a Merad J, Pons J.-M, Chuzel O, Bressy C. Eur. J. Org. Chem. 2016; 5589
    • 13b McLaughlin C, Smith AD. Chem. Eur. J. 2021; 27: 1533
    • 13c Bitai J, Westwood MT, Smith AD. Org. Biomol. Chem. 2021; 19: 2366
    • 14a Birman VB, Li X, Han Z. Org. Lett. 2007; 9: 37
    • 14b Liu P, Yang X, Birman VB, Houk KN. Org. Lett. 2012; 14: 3288
    • 14c West TH, Walden DM, Taylor JE, Brueckner AC, Johnston RC, Cheong PH.-Y, Lloyd-Jones GC, Smith AD. J. Am. Chem. Soc. 2017; 139: 4366
    • 14d Abbasov ME, Hudson BM, Tantillo DJ, Romo D. Chem. Sci. 2017; 8: 1511
    • 14e Young CM, Elmi A, Pascoe DJ, Morris RK, McLaughlin C, Woods AM, Frost AB, de la Houpliere A, Ling KB, Smith TK, Slawin AM. Z, Willoughby PH, Cockroft SL, Smith AD. Angew. Chem. Int. Ed. 2020; 59: 3705
    • 15a Schwarz KJ, Amos JL, Klein JC, Do DT, Snaddon TN. J. Am. Chem. Soc. 2016; 138: 5214
    • 15b Jiang X, Beiger JJ, Hartwig JF. J. Am. Chem. Soc. 2017; 139: 87
    • 15c Schwarz KJ, Pearson CM, Cintron-Rosado GA, Liu P, Snaddon TN. Angew. Chem. Int. Ed. 2018; 57: 7800
    • 15d Scaggs WR, Snaddon TN. Chem. Eur. J. 2018; 24: 14378
    • 15e Fyfe JW. B, Kabia OM, Pearson CM, Snaddon TN. Tetrahedron 2018; 74: 5383
    • 15f Hutchings-Goetz L, Yang C, Snaddon TN. ACS Catal. 2018; 8: 10537
    • 15g Pearson CM, Fyfe JW. B, Snaddon TN. Angew. Chem. Int. Ed. 2019; 58: 10521
  • 16 Schwarz KJ, Yang C, Fyfe JW. B, Snaddon TN. Angew. Chem. Int. Ed. 2018; 57: 12102
    • 17a Stockhammer L, Weinzierl D, Bögl T, Waser M. Org. Lett. 2021; 23: 6143
    • 17b Yuan S, Liao C, Zheng W.-H. Org. Lett. 2021; 23: 4142
    • 18a Morrill LC, Lébl T, Slawin AM. Z, Smith AD. Chem. Sci. 2012; 3: 2088
    • 18b Morrill LC, Ledingham LA, Couturier J.-P, Bickel J, Harper AD, Fallan C, Smith AD. Org. Biomol. Chem. 2014; 12: 624
    • 18c Song J, Zhang Z.-J, Chen S.-S, Fan T, Gong L.-Z. J. Am. Chem. Soc. 2018; 140: 3177
  • 19 Song J, Zhang Z.-J, Gong L.-Z. Angew. Chem. Int. Ed. 2017; 56: 5212 ; corrigendum: Angew. Chem. Int. Ed. 2017, 57, 3218
    • 20a Smith SR, Douglas J, Prevet H, Shapland P, Slawin AM. Z, Smith AD. J. Org. Chem. 2014; 79: 1626
    • 20b Arokianathar JN, Frost AB, Slawin AM. Z, Stead D, Smith AD. ACS Catal. 2018; 8: 1153
    • 20c Zhao F, Shu C, Young CM, Carpenter-Warren C, Slawin AM. Z, Smith AD. Angew. Chem. Int. Ed. 2021; 60: 11892
    • 21a Belmessieri D, Morrill LC, Simal C, Slawin AM. Z, Smith AD. J. Am. Chem. Soc. 2011; 133: 2714
    • 21b Simal C, Lébl T, Slawin AM. Z, Smith AD. Angew. Chem. Int. Ed. 2012; 51: 3653
    • 21c Leckie SM, Fallan C, Taylor JE, Brown TB, Pryde D, Lébl T, Slawin AM. Z, Smith AD. Synlett 2013; 24: 1243
    • 21d Morrill LC, Douglas J, Lébl T, Slawin AM. Z, Fox DJ, Smith AD. Chem. Sci. 2013; 4: 4146
    • 21e Smith SR, Leckie SM, Holmes R, Douglas J, Fallan C, Shapland P, Pryde D, Slawin AM. Z, Smith AD. Org. Lett. 2014; 16: 2506
    • 21f Morrill LC, Stark DG, Taylor JE, Smith SR, Squires JA, D’Hollander AC. A, Simal C, Shapland P, O’Riordan TJ. C, Smith AD. Org. Biomol. Chem. 2014; 12: 9016
    • 21g Yeh P.-P, Daniels DS. B, Fallan C, Gould E, Simal C, Taylor JE, Slawin AM. Z, Smith AD. Org. Biomol. Chem. 2015; 13: 2177
    • 21h Stark DG, Morrill LC, Cordes DB, Slawin AM. Z, O’Riordan TJ. C, Smith AD. Chem. Asian J. 2016; 11: 395
    • 21i Stark DG, Young CM, O’Riordan TJ. C, Slawin AM. Z, Smith AD. Org. Biomol. Chem. 2016; 14: 8068
    • 21j Izquierdo J, Pericàs MA. ACS Catal. 2016; 6: 348
    • 21k Young CM, Stark DG, West TH, Taylor JE, Smith AD. Angew. Chem. Int. Ed. 2016; 55: 14394
    • 21l Zhang S, Taylor JE, Slawin AM. Z, Smith AD. Org. Lett. 2018; 20: 5482
    • 21m Fan T, Zhang Z.-J, Zhang Y.-C, Song J. Org. Lett. 2019; 21: 7897
    • 21n Young CM, Taylor JE, Smith AD. Org. Biomol. Chem. 2019; 17: 4747
    • 21o Li L.-L, Ding D, Song J, Han Z.-Y, Gong L.-Z. Angew. Chem. Int. Ed. 2019; 58: 7647
    • 21p Zhang S, Greenhalgh MD, Slawin AM. Z, Smith AD. Chem. Sci. 2020; 11: 3885
  • 22 McLaughlin C, Slawin AM. Z, Smith AD. Angew. Chem. Int. Ed. 2019; 58: 15111
    • 23a West TH, Daniels DS. B, Slawin AM. Z, Smith AD. J. Am. Chem. Soc. 2014; 136: 4476
    • 23b Matviitsuk A, Greenhalgh MD, Barrios Antúnez D.-J, Slawin AM. Z, Smith AD. Angew. Chem. Int. Ed. 2017; 56: 12282
    • 23c Hartley WC, O’Riordan TJ. C, Smith AD. Synthesis 2017; 49: 3303
    • 23d Greenhalgh MD, Qu S, Slawin AM. Z, Smith AD. Chem. Sci. 2018; 9: 4909
  • 24 For stereodivergence in asymmetric catalysis, see: Krautwald S, Carreira EM. J. Am. Chem. Soc. 2017; 139: 5627
  • 25 Kim B, Kim Y, Lee SY. J. Am. Chem. Soc. 2021; 143: 73
    • 26a Amatore M, Beeson TD, Brown SP, MacMillan DW. C. Angew. Chem. Int. Ed. 2009; 48: 5121
    • 26b Halland N, Braunton A, Bachmann S, Marigo M, Jørgensen KA. J. Am. Chem. Soc. 2004; 126: 4790
    • 27a Marigo M, Fielenbach D, Braunton A, Kjærsgaard A, Jørgensen KA. Angew. Chem. Int. Ed. 2005; 44: 3703
    • 27b Steiner DD, Mase N, Barbas CF. III. Angew. Chem. Int. Ed. 2005; 44: 3706
    • 27c Beeson TD, MacMillan DW. C. J. Am. Chem. Soc. 2005; 127: 8826
    • 27d Shibatomi K, Kitahara K, Okimi T, Abe Y, Iwasa S. Chem. Sci. 2016; 7: 1388