Synthesis 2023; 55(02): 164-192
DOI: 10.1055/a-1932-6937
review
Special Issue dedicated to Prof. Alain Krief

Basic Concepts and Activation Modes in Visible-Light-Photocatalyzed Organic Synthesis

Karthik Gadde
,
Dries De Vos
,
This work was supported by the Universiteit Antwerpen (BOF), the Fonds Wetenschappelijk Onderzoek Vlaanderen (Fund for Scientific Research Flanders (FWO); project G0F1420N and scholarship to D.D.V. 11G6621N). B.U.W.M. is a Collen-Francqui research professor of the Francqui foundation.


Dedicated to Professor Alain Krief on the occasion of his 80th birthday

Abstract

Visible light photocatalysis has established itself as a promising sustainable and powerful strategy to access reactive intermediates, i.e. radicals and radical ions, under mild reaction conditions using visible light irradiation. This field enables the development of formerly challenging or even previously inaccessible organic transformations. In this tutorial review, an overview of the essential concepts and techniques of visible-light-mediated chemical processes and the most common types of photochemical activation of organic molecules, i.e. photoredox catalysis and photosensitization, are discussed. Selected photocatalytic alkene functionalization reactions are included as examples to illustrate the basic concepts and techniques with particular attention given to the understanding of their reaction mechanisms.

1 Introduction

2 Photocatalysts

3 Photophysical and Electrochemical Properties

3.1 Excited-State Energy

3.2 Ground-State Redox Potentials

3.3 Excited-State Redox Potentials

3.4 Local Absorbance Maximum for Lowest Energy Absorption

3.5 Excited-State Lifetime

3.6 [Ru(bpy)3]2+ as a Case Study

3.7 Basic Laws and Equations of Photochemistry and Photocatalysis

3.8 Common Terminology in Photochemistry and Photocatalysis

4 Activation Modes in Photocatalysis

4.1 Photoinduced Electron Transfer

4.2 Photoinduced Energy Transfer

5 Conclusions and Outlook



Publication History

Received: 13 April 2022

Accepted after revision: 29 August 2022

Accepted Manuscript online:
29 August 2022

Article published online:
27 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Poplata S, Tröster A, Zou Y.-Q, Bach T. Chem. Rev. 2016; 116: 9748
    • 1b Mangion IK, MacMillan DW. C. J. Am. Chem. Soc. 2005; 127: 3696
    • 1c Liu H.-J, Lee SP. Tetrahedron Lett. 1977; 18: 3699
    • 2a Kärkäs MD, Porco JA, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
    • 2b Bach T, Hehn JP. Angew. Chem. Int. Ed. 2011; 50: 1000
    • 2c Nicolaou KC, Gray DL. F, Tae J. J. Am. Chem. Soc. 2004; 126: 613
    • 2d Renata H, Zhou Q, Baran PS. Science 2013; 339: 59
  • 3 Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
  • 4 Bell JD, Murphy JA. Chem. Soc. Rev. 2021; 50: 9540
  • 5 Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. Chem. Soc. Rev. 2018; 47: 7190
  • 6 Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
  • 7 McAtee RC, McClain EJ, Stephenson CR. J. Trends Chem. 2019; 1: 111
  • 8 Ciamician G. Science 1912; 36: 385
    • 10a Miller DC, Tarantino KT, Knowles RR. Top. Curr. Chem. 2016; 374: 30
    • 10b Murray PR. D, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Chem. Rev. 2022; 122: 2017
  • 11 Capaldo L, Ravelli D, Fagnoni M. Chem. Rev. 2022; 122: 1875
    • 12a Zhou Q.-Q, Zou Y.-Q, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2019; 58: 1586
    • 12b Strieth-Kalthoff F, Glorius F. Chem 2020; 6: 1888
    • 14a Kancherla R, Muralirajan K, Sagadevan A, Rueping M. Trends Chem. 2019; 1: 510
    • 14b Cheung KP. S, Sarkar S, Gevorgyan V. Chem. Rev. 2022; 122: 1543
    • 14c Sarkar T, Shah TA, Maharana PK, Debnath B, Punniyamurthy T. Eur. J. Org. Chem. 2022; in press DOI: 10.1002/ejoc.202200541.
    • 15a Arias-Rotondo DM, McCusker JK. Chem. Soc. Rev. 2016; 45: 5803
    • 15b Hockin BM, Li C, Robertson N, Zysman-Colman E. Catal. Sci. Technol. 2019; 9: 889
    • 16a Bryden MA, Zysman-Colman E. Chem. Soc. Rev. 2021; 50: 7587
    • 16b Vega-Peñaloza A, Mateos J, Companyó X, Escudero-Casao M, Dell’Amico L. Angew. Chem. Int. Ed. 2021; 60: 1082
    • 16c Amos SG. E, Garreau M, Buzzetti L, Waser J. Beilstein J. Org. Chem. 2020; 16: 1163
    • 16d Lee Y, Kwon MS. Eur. J. Org. Chem. 2020; 2020: 6028
    • 16e Bobo MV, Kuchta JJ, Vannucci AK. Org. Biomol. Chem. 2021; 19: 4816
    • 17a Riente P, Noël T. Catal. Sci. Technol. 2019; 9: 5186
    • 17b Franchi D, Amara Z. ACS Sustainable Chem. Eng. 2020; 8: 15405
  • 18 De Vos D, Gadde K, Maes BU. W. Synthesis 2022; in press, DOI: 10.1055/a-1946-0512.
    • 19a Singh A, Teegardin K, Kelly M, Prasad KS, Krishnan S, Weaver JD. J. Organomet. Chem. 2015; 776: 51
    • 19b Koike T, Akita M. Inorg. Chem. Front. 2014; 1: 562
  • 20 Maes J, Mitchell EA, Maes BU. W. Base Metals in Catalysis: From Zero to Hero. In Green and Sustainable Medicinal Chemistry: Methods, Tools and Strategies for the 21st Century Pharmaceutical Industry, Chap. 16. Summerton L, Sneddon HF, Jones LC, Clark JH. Royal Society of Chemistry; Cambridge: 2016: 192-202
    • 21a Paria S, Reiser O. ChemCatChem 2014; 6: 2477
    • 21b Paria S, Reiser O. Visible Light and Copper Complexes: A Promising Match in Photoredox Catalysis. In Visible Light Photocatalysis in Organic Chemistry. Stephenson CR. J, Yoon TP, MacMillan DW. C. Wiley-VCH; Weinheim: 2018: 233-251
    • 21c Hossain A, Bhattacharyya A, Reiser O. Science 2019; 364: eaav9713
    • 21d Larsen CB, Wenger OS. Chem. Eur. J. 2018; 24: 2039
    • 21e Wenger OS. J. Am. Chem. Soc. 2018; 140: 13522
    • 22a Joshi-Pangu A, Lévesque F, Roth HG, Oliver SF, Campeau L.-C, Nicewicz D, DiRocco DA. J. Org. Chem. 2016; 81: 7244
    • 22b Tlili A, Lakhdar S. Angew. Chem. Int. Ed. 2021; 60: 19526
    • 23a Speckmeier E, Fischer TG, Zeitler K. J. Am. Chem. Soc. 2018; 140: 15353
    • 23b Natarajan P, König B. Eur. J. Org. Chem. 2021; 2021: 2145
  • 24 Hari DP, König B. Chem. Commun. 2014; 50: 6688
  • 25 Gisbertz S, Pieber B. ChemPhotoChem 2020; 4: 456
    • 26a Savateev A, Ghosh I, König B, Antonietti M. Angew. Chem. Int. Ed. 2018; 57: 15936
    • 26b Savateev A, Antonietti M. ChemCatChem 2019; 11: 6166
  • 27 Zhang T, Lin W. Chem. Soc. Rev. 2014; 43: 5982
    • 28a Geng K, He T, Liu R, Dalapati S, Tan KT, Li Z, Tao S, Gong Y, Jiang Q, Jiang D. Chem. Rev. 2020; 120: 8814
    • 28b Yang Q, Luo M, Liu K, Cao H, Yan H. Appl. Catal., B 2020; 276: 119174
  • 29 Lan G, Quan Y, Wang M, Nash GT, You E, Song Y, Veroneau SS, Jiang X, Lin W. J. Am. Chem. Soc. 2019; 141: 15767
  • 30 Knorn M, Rawner T, Czerwieniec R, Reiser O. ACS Catal. 2015; 5: 5186
  • 31 Martiny M, Steckhan E, Esch T. Chem. Ber. 1993; 126: 1671
  • 32 Kasha M. Discuss. Faraday Soc. 1950; 9: 14
  • 33 Rey YP, Abradelo DG, Santschi N, Strassert CA, Gilmour R. Eur. J. Org. Chem. 2017; 2017: 2170
    • 34a Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL. J. Chem. Educ. 2018; 95: 197
    • 34b Roth HG, Romero NA, Nicewicz DA. Synlett 2016; 27: 714
  • 35 Wu Y, Kim D, Teets TS. Synlett 2022; 33: 1154
  • 36 Rehm D, Weller A. Isr. J. Chem. 1970; 8: 259
  • 37 Campagna S, Puntoriero F, Nastasi F, Bergamini G, Balzani V. Photochemistry and Photophysics of Coordination Compounds: Ruthenium . In Photochemistry and Photophysics of Coordination Compounds I . Balzani V, Campagna S. Springer; Heidelberg: 2007: 117-214
    • 38a Cismesia MA, Yoon TP. Chem. Sci. 2015; 6: 5426
    • 38b Gadde K, Mampuys P, Guidetti A, Ching HY. V, Herrebout WA, Van Doorslaer S, Abbaspour Tehrani K, Maes BU. W. ACS Catal. 2020; 10: 8765
    • 39a Gaida F, Griesbeck AG, Vollmer M. Photocatalysis: The Principles . In Science of Synthesis: Photocatalysis in Organic Synthesis, Chap. 3. König B. Thieme; Stuttgart: 2019: 3
    • 39b Kuijpers KP. L, Bottecchia C, Cambié D, Drummen K, König NJ, Noël T. Angew. Chem. Int. Ed. 2018; 57: 11278
  • 40 Żamojć K, Bylińska I, Wiczk W, Chmurzyński L. Int. J. Mol. Sci. 2021; 22: 885
  • 41 IUPAC Compendium of Chemical Terminology, 2nd ed. McNaught AD, Wilkinson A. Blackwell Scientific; Oxford: 1997. https//goldbook.iupac.org(accessed Sept 15, 2022
  • 42 Tibbetts JD, Bull SD. Adv. Sustainable Syst. 2021; 5: 2000292
  • 43 Besson M, Gallezot P, Pinel C. Chem. Rev. 2014; 114: 1827
  • 44 Beller M, Seayad J, Tillack A, Jiao H. Angew. Chem. Int. Ed. 2004; 43: 3368
    • 45a Courant T, Masson G. J. Org. Chem. 2016; 81: 6945
    • 45b Cao M.-Y, Ren X, Lu Z. Tetrahedron Lett. 2015; 56: 3732
    • 45c Koike T, Akita M. Chem 2018; 4: 409
    • 46a Cano-Yelo H, Deronzier A. J. Chem. Soc., Perkin Trans. 2 1984; 1093
    • 46b Cano-Yelo H, Deronzier A. Tetrahedron Lett. 1984; 25: 5517
    • 46c Cano-Yelo H, Deronzier A. J. Chem. Soc., Faraday Trans. 1 1984; 3011
    • 46d Cano-Yelo H, Deronzier A. J. Photochem. 1987; 37: 315
    • 47a Hironaka K, Fukuzumi S, Tanaka T. J. Chem. Soc., Perkin Trans. 2 1984; 1705
    • 47b Ishikawa M, Fukuzumi S. J. Chem. Soc., Chem. Commun. 1990; 1353
    • 47c Fukuzumi S, Mochizuki S, Tanaka T. J. Phys. Chem. 1990; 94: 722
    • 48a Hedstrand DM, Kruizinga WH, Kellogg RM. Tetrahedron Lett. 1978; 19: 1255
    • 48b Van Bergen TJ, Hedstrand DM, Kruizinga WH, Kellogg RM. J. Org. Chem. 1979; 44: 4953
    • 49a Okada K, Okamoto K, Morita N, Okubo K, Oda M. J. Am. Chem. Soc. 1991; 113: 9401
    • 49b Okada K, Okubo K, Morita N, Oda M. Tetrahedron Lett. 1992; 33: 7377
    • 50a Pac C, Ihama M, Yasuda M, Miyauchi Y, Sakurai H. J. Am. Chem. Soc. 1981; 103: 6495
    • 50b Ishitani O, Pac C, Sakurai H. J. Org. Chem. 1983; 48: 2941
    • 50c Majima T, Pac C, Nakasone A, Sakurai H. J. Am. Chem. Soc. 1981; 103: 4499
  • 51 Pandey G, Hajra S, Ghorai MK, Kumar KR. J. Am. Chem. Soc. 1997; 119: 8777
  • 52 Tomioka H, Ueda K, Ohi H, Izawa Y. Chem. Lett. 1986; 15: 1359
    • 53a Willner I, Tsfania T, Eichen Y. J. Org. Chem. 1990; 55: 2656
    • 53b Mandler D, Willner I. J. Chem. Soc., Perkin Trans. 2 1986; 805
    • 53c Mandler D, Willner I. J. Chem. Soc., Chem. Commun. 1986; 851
  • 54 Ischay MA, Anzovino ME, Du J, Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
  • 55 Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
  • 56 Narayanam JM. R, Tucker JW, Stephenson CR. J. J. Am. Chem. Soc. 2009; 131: 8756
  • 57 Marcus RA. Angew. Chem. Int. Ed. 1993; 32: 1111
  • 58 Nguyen JD, Tucker JW, Konieczynska MD, Stephenson CR. J. J. Am. Chem. Soc. 2011; 133: 4160
  • 59 Courant T, Masson G. Chem. Eur. J. 2012; 18: 423
  • 60 Pirtsch M, Paria S, Matsuno T, Isobe H, Reiser O. Chem. Eur. J. 2012; 18: 7336
  • 61 Hossain A, Engl S, Lutsker E, Reiser O. ACS Catal. 2019; 9: 1103
  • 62 Engl S, Reiser O. Chem. Soc. Rev. 2022; 51: 5287
  • 63 Huang H, Yu C, Zhang Y, Zhang Y, Mariano PS, Wang W. J. Am. Chem. Soc. 2017; 139: 9799
  • 64 Riente P, Pericàs MA. ChemSusChem 2015; 8: 1841
  • 65 Riente P, Fianchini M, Llanes P, Pericàs MA, Noël T. Nat. Commun. 2021; 12: 625
  • 66 Mirkovic T, Ostroumov EE, Anna JM, van Grondelle R, Govindjee, Scholes GD. Chem. Rev. 2017; 117: 249
    • 67a Yoo W.-J, Tsukamoto T, Kobayashi S. Org. Lett. 2015; 17: 3640
    • 67b Heitz DR, Tellis JC, Molander GA. J. Am. Chem. Soc. 2016; 138: 12715
  • 68 Neveselý T, Wienhold M, Molloy JJ, Gilmour R. Chem. Rev. 2022; 122: 2650
  • 69 Chen D.-F, Chrisman CH, Miyake GM. ACS Catal. 2020; 10: 2609
  • 70 Patra T, Bellotti P, Strieth-Kalthoff F, Glorius F. Angew. Chem. Int. Ed. 2020; 59: 3172
  • 71 Prat D, Wells A, Hayler J, Sneddon H, McElroy CR, Abou-Shehada S, Dunn PJ. Green Chem. 2016; 18: 288
    • 72a McElroy CR, Constantinou A, Jones LC, Summerton L, Clark JH. Green Chem. 2015; 17: 3111
    • 72b Abou-Shehada S, Mampuys P, Maes BU. W, Clark JH, Summerton L. Green Chem. 2017; 19: 249
  • 73 Monteith ER, Mampuys P, Summerton L, Clark JH, Maes BU. W, McElroy CR. Green Chem. 2020; 22: 123
  • 74 Pitzer L, Schäfers F, Glorius F. Angew. Chem. Int. Ed. 2019; 58: 8572
  • 75 Novaes LF. T, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Chem. Soc. Rev. 2021; 50: 7941
  • 76 Sambiagio C, Sterckx H, Maes BU. W. ACS Cent. Sci. 2017; 3: 686