Synlett
DOI: 10.1055/a-2275-3719
synpacts

Nickel-Catalyzed Asymmetric Borylative Coupling of 1,3-Dienes with Aldehydes

Jin-Tao Ma
,
Li-Jun Xiao
We thank the National Key R&D Program of China (2022YFA1503200), the National Natural Science Foundation of China (No. 22188101, 22201140), the Fundamental Research Funds for the Central Universities, and the Haihe Laboratory of Sustainable Chemical Transformations for financial support.


Abstract

The nickel-catalyzed borylative coupling of aldehydes and 1,3-dienes with diboron reagents offers an efficient method for synthesizing valuable homoallylic alcohols from easily accessible starting materials. However, achieving enantioselectivity in this reaction has been a significant challenge. We discuss our recent report on the first example of a nickel-catalyzed enantioselective borylative coupling of aldehydes with 1,3-dienes, employing a chiral spiro-phosphine–oxazoline ligand. Notably, by utilizing (E)-1,3-dienes or (Z)-1,3-dienes, we can reverse the diastereoselectivity, yielding either anti- or syn-products, respectively.



Publication History

Received: 30 November 2023

Accepted after revision: 23 February 2024

Accepted Manuscript online:
23 February 2024

Article published online:
13 March 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Grub J, Löser E. In Ullmann’s Encyclopedia of Industrial Chemistry . Wiley-VCH; Weinheim: 2011. DOI DOI: 10.1002/14356007.a04_431.pub2
  • 2 Weitz HM, Löser E. In Ullmann’s Encyclopedia of Industrial Chemistry . Wiley-VCH; Weinheim: 2000. DOI DOI: 10.1002/14356007.a14_627
  • 3 Behr A, Johnen L. ChemSusChem 2009; 2: 1072
    • 4a Nguyen KD, Park BY, Luong T, Sato H, Garza VJ, Krische MJ. Science 2016; 354: aah5133
    • 4b Holmes M, Schwartz LA, Krische MJ. Chem. Rev. 2018; 118: 6026
    • 4c Doerksen RS, Meyer CC, Krische MJ. Angew. Chem. Int. Ed. 2019; 58: 14055
    • 4d Adamson NJ, Malcolmson SJ. ACS Catal. 2020; 10: 1060
    • 4e Flaget A, Zhang C, Mazet C. ACS Catal. 2022; 12: 15638
    • 5a Sato Y, Takimoto M, Hayashi K, Katsuhara T, Takagi K, Mori M. J. Am. Chem. Soc. 1994; 116: 9771
    • 5b Takimoto M, Hiraga Y, Sato Y, Mori M. Tetrahedron Lett. 1998; 39: 4543
    • 5c Sato Y, Saito N, Mori M. J. Am. Chem. Soc. 2000; 122: 2371
    • 6a Kimura M, Ezoe A, Shibata K, Tamaru Y. J. Am. Chem. Soc. 1998; 120: 4033
    • 6b Kimura M, Matsuo S, Shibata K, Tamaru Y. Angew. Chem. Int. Ed. 1999; 38: 3386
    • 6c Kimura M, Ezoe A, Tanaka S, Tamaru Y. Angew. Chem. Int. Ed. 2001; 40: 3600
    • 6d Kimura M, Ezoe A, Mori M, Iwata K, Tamaru Y. J. Am. Chem. Soc. 2006; 128: 8559
    • 6e Kimura M, Tamaru Y. Top. Curr. Chem. 2007; 279: 173
    • 6f Li Y.-L, Li W.-D, Gu Z.-Y, Chen J, Xia J.-B. ACS Catal. 2020; 10: 1528
    • 6g Wang C.-G, Zhang Y, Wang S, Chen B, Li Y, Ni H.-L, Gao Y, Hu P, Wang B.-Q, Cao P. Org. Lett. 2021; 23: 535
    • 6h Li Y.-Q, Chen G, Shi S.-L. Org. Lett. 2021; 23: 2571
  • 7 For a related mechanistic investigation, see: Ogoshi S, Tonomori K.-i, Oka M.-a, Kurosawa H. J. Am. Chem. Soc. 2006; 128: 7077

    • For related coupling reactions involving π-components other than 1,3-dienes, see:
    • 8a Jackson EP, Malik HA, Sormunen GJ, Baxter RD, Liu P, Wang H, Shareef A.-R, Montgomery J. Acc. Chem. Res. 2015; 48: 1736
    • 8b Standley EA, Tasker SZ, Jensen KL, Jamison TF. Acc. Chem. Res. 2015; 48: 1503
    • 8c Hoshimoto Y, Ohashi M, Ogoshi S. Acc. Chem. Res. 2015; 48: 1746

      For leading reviews and books on nickel-catalyzed reductive coupling and alkylative coupling, see:
    • 9a Montgomery J. Angew. Chem. Int. Ed. 2004; 43: 3890
    • 9b Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
    • 9c Nickel Catalysis in Organic Synthesis: Methods and Reactions. Ogoshi S. Wiley-VCH; Weinheim: 2020
  • 10 Yang Y, Zhu S.-F, Duan H.-F, Zhou C.-Y, Wang L.-X, Zhou Q.-L. J. Am. Chem. Soc. 2007; 129: 2248
  • 11 Sato Y, Hinata Y, Seki R, Oonishi Y, Saito N. Org. Lett. 2007; 9: 5597
    • 12a Davies TQ, Murphy JJ, Dousset M, Fürstner A. J. Am. Chem. Soc. 2021; 143: 13489
    • 12b Kim JY, Davies TQ, Fürstner A. Chem. Commun. 2023; 59: 12613
  • 13 Davies TQ, Kim JY, Fürstner A. J. Am. Chem. Soc. 2022; 144: 18817
  • 14 Marcum JS, Meek SJ. J. Am. Chem. Soc. 2022; 144: 19231

    • For selected reviews, see:
    • 15a Jang H.-Y, Krische MJ. Acc. Chem. Res. 2004; 37: 653
    • 15b Skucas E, Ngai M.-Y, Komanduri V, Krische MJ. Acc. Chem. Res. 2007; 40: 1394
    • 15c Kim SW, Zhang W, Krische MJ. Acc. Chem. Res. 2017; 50: 2371
    • 16a Li C, Liu RY, Jesikiewicz LT, Yang Y, Liu P, Buchwald SL. J. Am. Chem. Soc. 2019; 141: 5062
    • 16b Li C, Shin K, Liu RY, Buchwald SL. Angew. Chem. Int. Ed. 2019; 58: 17074
    • 16c Liu RY, Buchwald SL. Acc. Chem. Res. 2020; 53: 1229

      For selected reviews, see:
    • 17a Burks HE, Morken JP. Chem. Commun. 2007; 4717
    • 17b Cho HY, Morken JP. Chem. Soc. Rev. 2014; 43: 4368

      For selected reviews, see:
    • 18a Hoveyda AH, Koh MJ, Lee K, Lee J. Org. React. (Hoboken, NJ, U. S.) 2019; 100: 959
    • 18b Wu X, Gong L.-Z. Synthesis 2019; 51: 122
    • 18c Perry GJ. P, Jia T, Procter DJ. ACS Catal. 2020; 10: 1485
    • 18d Whyte A, Torelli A, Mirabi B, Zhang A, Lautens M. ACS Catal. 2020; 10: 11578
    • 19a Feng J.-J, Oestreich M. Angew. Chem. Int. Ed. 2019; 58: 8211
    • 19b Feng J.-J, Xu Y, Oestreich M. Chem. Sci. 2019; 10: 9679
  • 20 Chen J, Miliordos E, Chen M. Angew. Chem. Int. Ed. 2021; 60: 840
  • 21 Jiang L, Cao P, Wang M, Chen B, Wang B, Liao J. Angew. Chem. Int. Ed. 2016; 55: 13854
    • 22a Sato Y, Saito N, Mori M. Chem. Lett. 2002; 31: 18
    • 22b Saito N, Kobayashi A, Sato Y. Angew. Chem. Int. Ed. 2012; 51: 1228
  • 23 Cho HY, Morken JP. J. Am. Chem. Soc. 2008; 130: 16140
    • 24a Cho HY, Morken JP. J. Am. Chem. Soc. 2010; 132: 7576
    • 24b Cho HY, Yu Z, Morken JP. Org. Lett. 2011; 13: 5267
    • 25a Xiao L.-J, Zhao C.-Y, Cheng L, Feng B.-Y, Feng W.-M, Xie J.-H, Xu X.-F, Zhou Q.-L. Angew. Chem. Int. Ed. 2018; 57: 3396
    • 25b Cheng L, Li M.-M, Xiao L.-J, Xie J.-H, Zhou Q.-L. J. Am. Chem. Soc. 2018; 140: 11627
    • 25c Fan C, Lv X.-Y, Xiao L.-J, Xie J.-H, Zhou Q.-L. J. Am. Chem. Soc. 2019; 141: 2889
    • 25d Lv X.-Y, Fan C, Xiao L.-J, Xie J.-H, Zhou Q.-L. CCS Chem. 2019; 1: 328
    • 25e Wang B, Liu X.-M, Zhang K.-X, Feng W.-M, Xiao L.-J, Zhou Q.-L. CCS Chem. 2023; 5: 814
    • 25f Xiao W.-G, Xuan B, Xiao L.-J, Zhou Q.-L. Chem. Sci. 2023; 14: 8644
    • 25g Wang B, Zhang T, Xiao L.-J, Zhou Q.-L. ACS Catal. 2023; 13: 8692
  • 26 Ma J.-T, Zhang T, Yao B.-Y, Xiao L.-J, Zhou Q.-L. J. Am. Chem. Soc. 2023; 145: 19195
    • 27a Maezawa I, Kinumaki A, Suzuki M. J. Antibiot. 1976; 29: 1203
    • 27b Seki-Asano M, Okazaki T, Yamagishi M, Sakai N, Takayama Y, Hanada K, Morimoro S, Takatsuki A, Mizoue K. J. Antibiot. 1994; 47: 1395
    • 27c D’Auria MV, Gomez-Paloma L, Minale L, Zampella A, Verbist J.-F, Roussakis C, Debitus C, Patissou J. Tetrahedron 1994; 50: 4829
    • 27d Klassen JL, Lee SR, Poulsen M, Beemelmanns C, Kim KH. Front. Microbiol. 2019; 10: 1739
  • 28 Kliman LT, Mlynarski SN, Ferris GE, Morken JP. Angew. Chem. Int. Ed. 2012; 51: 521
    • 29a Gao S, Duan M, Liu J, Yu P, Houk KN, Chen M. Angew. Chem. Int. Ed. 2021; 60: 24096
    • 29b Liu J, Gao S, Chen M. Org. Lett. 2021; 23: 9451
    • 29c Liu J, Gao S, Chen M. Org. Lett. 2021; 23: 7808
  • 30 Zhu S.-F, Xie J.-B, Zhang Y.-Z, Li S, Zhou Q.-L. J. Am. Chem. Soc. 2006; 128: 12886
    • 31a Marshall JA, Xie S. J. Org. Chem. 1995; 60: 7230
    • 31b Marshall JA, Palovich MR. J. Org. Chem. 1998; 63: 3701
    • 31c Marshall JA, Adams ND. Org. Lett. 2000; 2: 2897
  • 32 Yang Y, Buchwald SL. J. Am. Chem. Soc. 2013; 135: 10642
    • 33a Zhu C, Yang B, Mai BK, Palazzotto S, Qiu Y, Gudmundsson A, Ricke A, Himo F, Bäckvall J.-E. J. Am. Chem. Soc. 2018; 140: 14324
    • 33b Guan Q, Ji Y, Zhao Q, Zhang C. CCS Chem. 2022; 4: 1545