Synthesis 2018; 50(11): 2247-2254
DOI: 10.1055/s-0036-1591569
paper
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed S-Arylation of Arylthioureas by Using Diaryl­iodonium Salts

Hui Zhu
a   School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. of China   Email: dzb04982@wit.edu.cn
,
Xing Liu
a   School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. of China   Email: dzb04982@wit.edu.cn
,
Yu Cheng
a   School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. of China   Email: dzb04982@wit.edu.cn
,
Han-Ying Peng
a   School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. of China   Email: dzb04982@wit.edu.cn
,
Yue-Sheng Li*
b   Nonpower Nuclear Technology Collaborative Innovation Center, Hubei University of Science & Technology, Xianning 437100, P. R. of China   Email: frank78929@163.com
,
Zhi-Bing Dong*
a   School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. of China   Email: dzb04982@wit.edu.cn
› Author Affiliations
We are thankful for support from the National Natural Science Foundation of China (21302150, 11405050), Foundation of Chen-Guang Program from Hubei Association for Science and Technology, Foundation of Chutian Distinguished Fellow from Hubei Provincial Department of Education, and Foundation of High-end Talent Cultivation Program from Wuhan Institute of Technology.
Further Information

Publication History

Received: 15 February 2018

Accepted after revision: 19 March 2018

Publication Date:
25 April 2018 (online)


Abstract

A convenient and efficient copper-catalyzed S-arylation of arylthioureas using diaryliodonium salts is reported. The desired arylisothioureas were synthesized in good yields in the presence of CuCl as catalyst and K2CO3 as base, and a wide variety of functional groups on the arylthioureas and diaryliodonium salts were tolerated. The protocol affords an alternative synthesis of some potentially useful biological and pharmaceutical compounds.

Supporting Information

 
  • References

    • 1a Bean GJ. Flickinger ST. Westler WM. McCully ME. Sept D. Weibel DB. Amann KJ. Biochemistry 2009; 48: 4852
    • 1b Paesano N. Marzocco S. Vicidomini C. Saturnino C. Autore G. Sbardella G. Bioorg. Med. Chem. Lett. 2005; 15: 539
    • 1c Rogovoy B. Vvedenskiy V. Cai X. Chassaing C. Katritzky AR. Forood B. (Lion Bioscience AG). WO 2003095396, 2003
    • 1d Gross M. Held P. Vogel R. (VEB Fahlberg-List, Chemische und Pharmazeutische Fabriken). DE 2035907, 1971
    • 1e Zhang J. McCarthy TJ. Moore WM. Currie MG. Welch MJ. J. Med. Chem. 1996; 39: 5110
  • 2 Katritzky AR. Cai XH. Vvedensky VY. Rogovoy BV. Forood B. Hebert N. Heterocycles 2002; 57: 1799
  • 3 Dang Q. Brown BS. Liu Y. Rydzewski RM. Robinson ED. Poelje PD. Reddy MR. Eroin MD. J. Med. Chem. 2009; 52: 2880
  • 4 Khalili G. Monatsh. Chem. 2015; 146: 1891
    • 5a Biswas K. Greaney MF. Org. Lett. 2011; 13: 4946
    • 5b Ley K. Eholzer DU. Angew. Chem. 1966; 78: 672
    • 5c Dawra N. Ram RN. Synthesis 2016; 48: 4199
    • 5d Yavari I. Nematpour M. Damghani T. Tetrahedron Lett. 2014; 55: 1323
    • 6a Martin FM. Synthesis 2017; 49: 1905
    • 6b Yang MN. Yan DM. Zhao QQ. Chen JR. Xiao WJ. Org. Lett. 2017; 19: 5208
    • 6c Duan YN. Jiang S. Han YC. Sun B. Zhang C. Chin. J. Org. Chem. 2016; 36: 1973
    • 6d Christopher JT. Shariar MA. S. Danielle LB. Sachin GM. Michael FG. Angew. Chem. Int. Ed. 2017; 56: 5263
    • 7a Zhdankin VV. Stang PJ. Chem. Rev. 2008; 108: 5299
    • 7b Silva LF. Olofsson B. Nat. Prod. Rep. 2011; 28: 1722
    • 7c Merritt EA. Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
    • 7d Yoshimura A. Zhdankin VV. Chem. Rev. 2016; 116: 3328
  • 8 Zhu H. Liu X. Chang C.-Z. Dong Z.-B. Synthesis 2017; 49: 5211
    • 9a Xu W. Zeng M.-T. Liu M. Liu S.-S. Li Y.-S. Dong Z.-B. Synthesis 2017; 49: 3084
    • 9b Xu W. Zeng M.-T. Liu M. Liu X. Chang C.-Z. Zhu H. Li Y.-S. Dong Z.-B. Chem. Lett. 2017; 46: 641
    • 9c Dong Z.-B. Wang M. Zhu H. Liu X. Chang C.-Z. Synthesis 2017; 49: 5258
    • 9d Liu M. Zeng M.-T. Xu W. Wu L. Dong Z.-B. Tetrahedron Lett. 2017; 58: 4352
    • 9e Xu W. Zeng M.-T. Liu S.-S. Li Y.-S. Dong Z.-B. Tetrahedron Lett. 2017; 58: 4289
    • 9f Liu X. Liu M. Xu W. Zeng M.-T. Zhu H. Chang C.-Z. Dong Z.-B. Green Chem. 2017; 19: 5591
    • 9g Dong Z.-B. Liu X. Bolm C. Org. Lett. 2017; 19: 5916
    • 9h Zeng M.-T. Xu W. Liu X. Chang C.-Z. Zhu H. Dong Z.-B. Eur. J. Org. Chem. 2017; 6060
    • 9i Liu X. Cao Q. Xu W. Zeng M.-T. Dong Z.-B. Eur. J. Org. Chem. 2017; 5795
    • 9j Zeng M.-T. Wang M. Peng H.-Y. Cheng Y. Dong Z.-B. Synthesis 2018; 50: 644
    • 9k Cheng Y. Liu X. Dong Z.-B. Eur. J. Org. Chem. 2018; 815
    • 9l Xu W. Gao F. Dong Z.-B. Eur. J. Org. Chem. 2018; 821
    • 9m Cao Q. Peng H.-Y. Cheng Y. Dong Z.-B. Synthesis 2018; 50: 1527
    • 10a Hickman AJ. Sanford MS. Nature 2012; 484: 177
    • 10b Casitas A. Ribas X. Chem. Sci. 2013; 4: 2301
    • 10c Bhong BY. Shelke AV. Karade NN. Tetrahedron Lett. 2013; 54: 739
    • 10d Lee OS. Lee HK. Kim H. Shin H. Sohn J.-H. Tetrahedron 2015; 71: 2936