Synlett
DOI: 10.1055/s-0043-1763755
synpacts

Carboxylation of Alkenes with CO2 via Photocatalytic Cleavage of C=C Double Bonds

Pan-Feng Yuan
a   Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, No. 2, 1st North Street, Zhongguancun, Haidian District, Beijing 100190, P. R. of China
,
a   Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, No. 2, 1st North Street, Zhongguancun, Haidian District, Beijing 100190, P. R. of China
b   University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100049, P. R. of China
› Author Affiliations
This work was financially supported by the National Natural Science Foundation of China (22271293), the CAS Project for Young Scientists in Basic Research (YSBR-050) and the Chinese Academy of Sciences.


Abstract

The cleavage of double bonds in alkenes constitutes an integral process in converting feedstock materials into high-value synthetic intermediates. Well-known examples such as the oxidative cleavage of olefins and olefin metathesis only facilitate the synthesis of oxygen-containing compounds and the recombination of olefins. Therefore, it is appealing to extend C=C double bond cleavage to yield more abundant transformations. Herein, we report a novel photocatalytic approach for the deconstructive carboxylation of alkenes with CO2 for the synthesis of carboxylic acids in the absence of transition metals. Compared with reported carboxylations with CO2 during which carbon numbers are typically increased, we achieve the exchange of carbon dioxide with one of the carbons of the alkene double bond, thus providing carboxylic acids with unchanged carbon numbers when terminal alkenes are used.



Publication History

Received: 04 March 2024

Accepted after revision: 29 April 2024

Article published online:
14 May 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Braunstein P, Matt D, Nobel D. Chem. Rev. 1988; 88: 747
    • 1b Sakakura T, Choi J.-C, Yasuda H. Chem. Rev. 2007; 107: 2365
    • 1c Tortajada A, Juliá-Hernández F, Börjesson M, Moragas T, Martin R. Angew. Chem. Int. Ed. 2018; 57: 15948
    • 1d Song L, Jiang Y.-X, Zhang Z, Gui Y.-Y, Zhou X.-Y, Yu D.-G. Chem. Commun. 2020; 56: 8355
  • 2 Prodrugs: Challenges and Rewards, Part 1. Stella V, Borchardt R, Hageman M, Oliyai R, Maag H, Tilley J. Springer; New York: 2007
  • 3 Aresta M, Dibenedetto A, Quaranta E. Reaction Mechanisms in Carbon Dioxide Conversion . Springer-Verlag; Berlin/Heidelberg: 2016
    • 4a Huang K, Sun C.-L, Shi Z.-J. Chem. Soc. Rev. 2011; 40: 2435
    • 4b Börjesson M, Moragas T, Gallego D, Martin R. ACS Catal. 2016; 6: 6739
    • 4c Chen Y.-G, Xu X.-T, Zhang K, Li Y.-Q, Zhang L.-P, Fang P, Mei T.-S. Synthesis 2018; 50: 35
    • 4d Tortajada A, Börjesson M, Martin R. Acc. Chem. Res. 2021; 54: 3941
    • 5a Folest J.-C, Duprilot J.-M, Perichon J, Robin Y, Devynck J. Tetrahedron Lett. 1985; 26: 2633
    • 5b Amatore C, Jutand A. J. Am. Chem. Soc. 1991; 113: 2819
    • 5c Fujihara T, Nogi K, Xu T, Terao J, Tsuji Y. J. Am. Chem. Soc. 2012; 134: 9106
    • 5d León T, Correa A, Martin R. J. Am. Chem. Soc. 2013; 135: 1221
    • 5e Chen B.-L, Zhu H.-W, Xiao Y, Sun Q.-L, Wang H, Lu J.-X. Electrochem. Commun. 2014; 42: 55
    • 5f Zhang S, Chen W.-Q, Yu A, He L.-N. ChemCatChem 2015; 7: 3972
    • 5g Wang Y, Jiang X, Wang B. Chem. Commun. 2020; 56: 14416
    • 6a Correa A, Martín R. J. Am. Chem. Soc. 2009; 131: 15974
    • 6b Hang W, Yi Y, Xi C. Adv. Synth. Catal. 2020; 362: 2337
    • 6c Davies J, Lyonnet JR, Carvalho B, Sahoo B, Day CS, Juliá-Hernández F, Duan Y, Álvaro V.-R, Obst M, Norrby P.-O, Hopmann KH, Martin R. J. Am. Chem. Soc. 2024; 146: 1753
    • 7a Ebert GW, Juda WL, Kosakowski RH, Ma B, Dong L, Cummings KE, Phelps MV. B, Mostafa AE, Luo J. J. Org. Chem. 2005; 70: 4314
    • 7b Tran-Vu H, Daugulis O. ACS Catal. 2013; 3: 2417
    • 8a Correa A, León T, Martin R. J. Am. Chem. Soc. 2014; 136: 1062
    • 8b Moragas T, Cornella J, Martin R. J. Am. Chem. Soc. 2014; 136: 17702
    • 8c Mita T, Higuchi Y, Sato Y. Chem. Eur. J. 2015; 21: 16391
    • 9a Sun S, Yu J.-T, Jiang Y, Cheng J. Adv. Synth. Catal. 2015; 357: 2022
    • 9b Yanagi T, Somerville RJ, Nogi K, Martin R, Yorimitsu H. ACS Catal. 2020; 10: 2117
    • 9c Yorimitsu H. Chem. Rec. 2021; 21: 3356
    • 9d Tang S, Zhao X, Yang L, Li B, Wang B. Angew. Chem. Int. Ed. 2022; 61: e202212975
  • 10 Moragas T, Gaydou M, Martin R. Angew. Chem. Int. Ed. 2016; 55: 5053
  • 11 Tang S, Liu Z, Zhang J, Li B, Wang B. Angew. Chem. Int. Ed. 2024; 63: e202318572
    • 12a Ukai K, Aoki M, Takaya J, Iwasawa N. J. Am. Chem. Soc. 2006; 128: 8706
    • 12b Ohishi T, Nishiura M, Hou Z. Angew. Chem. Int. Ed. 2008; 47: 5792
    • 13a Liao L.-L, Cao G.-M, Ye J.-H, Sun G.-Q, Zhou W.-J, Gui Y.-Y, Yan S.-S, Shen G, Yu D.-G. J. Am. Chem. Soc. 2018; 140: 17338
    • 13b Yang D.-T, Zhu M, Schiffer ZJ, Williams K, Song X, Liu X, Manthiram K. ACS Catal. 2019; 9: 4699
    • 13c Yan S.-S, Liu S.-H, Chen L, Bo Z.-Y, Jing K, Gao T.-Y, Yu B, Lan Y, Luo S.-P, Yu D.-G. Chem 2021; 7: 3099
    • 13d Bo Z.-Y, Yan S.-S, Gao T.-Y, Song L, Ran C.-K, He Y, Zhang W, Cao G.-M, Yu D.-G. Chin. J. Catal. 2022; 43: 2388
    • 13e Jing K, Wei M.-K, Yan S.-S, Liao L.-L, Niu Y.-N, Luo S.-P, Yu B, Yu D.-G. Chin. J. Catal. 2022; 43: 1667
    • 13f Ran C.-K, Niu Y.-N, Song L, Wei M.-K, Cao Y.-F, Luo S.-P, Yu Y.-M, Liao L.-L, Yu D.-G. ACS Catal. 2022; 12: 18
    • 13g Wang Y, Zhao Z, Pan D, Wang S, Jia K, Ma D, Yang G, Xue X.-S, Qiu Y. Angew. Chem. Int. Ed. 2022; 61: e202210201
    • 14a Masuda Y, Ishida N, Murakami M. J. Am. Chem. Soc. 2015; 137: 14063
    • 14b Seo H, Katcher MH, Jamison TF. Nat. Chem. 2017; 9: 453
    • 14c Ishida N, Masuda Y, Imamura Y, Yamazaki K, Murakami M. J. Am. Chem. Soc. 2019; 141: 19611
    • 14d Meng Q.-Y, Schirmer TE, Berger AL, Donabauer K, König B. J. Am. Chem. Soc. 2019; 141: 11393
    • 14e Schmalzbauer M, Svejstrup TD, Fricke F, Brandt P, Johansson MJ, Bergonzini G, König B. Chem 2020; 6: 2658
    • 14f Sun G.-Q, Yu P, Zhang W, Zhang W, Wang Y, Liao L.-L, Zhang Z, Li L, Lu Z, Yu D.-G, Lin S. Nature 2023; 615: 67
    • 14g Zhao Z, Liu Y, Wang S, Tang S, Ma D, Zhu Z, Guo C, Qiu Y. Angew. Chem. Int. Ed. 2023; 62: e202214710
    • 14h Jiang Y.-X, Liao L.-L, Gao T.-Y, Xu W.-H, Zhang W, Song L, Sun G.-Q, Ye J.-H, Lan Y, Yu D.-G. Nat. Synth. 2024; 3: 394
  • 15 Hong J, Li M, Zhang J, Sun B, Mo F. ChemSusChem 2019; 12: 6
    • 16a Zhang Z, Gong L, Zhou X.-Y, Yan S.-S, Li J, Yu D.-G. Acta Chim. Sin. 2019; 77: 783
    • 16b Bertuzzi G, Cerveri A, Lombardi L, Bandini M. Chin. J. Chem. 2021; 39: 3116
    • 17a Williams CM, Johnson JB, Rovis T. J. Am. Chem. Soc. 2008; 130: 14936
    • 17b Greenhalgh MD, Thomas SP. J. Am. Chem. Soc. 2012; 134: 11900
    • 17c Ostapowicz TG, Schmitz M, Krystof M, Klankermayer J, Leitner W. Angew. Chem. Int. Ed. 2013; 52: 12119
    • 17d Yatham VR, Shen Y, Martin R. Angew. Chem. Int. Ed. 2017; 56: 10915
    • 17e Meng Q.-Y, Wang S, Huff GS, König B. J. Am. Chem. Soc. 2018; 140: 3198
    • 17f Yue J.-P, Xu J.-C, Luo H.-T, Chen X.-W, Song H.-X, Deng Y, Yuan L, Ye J.-H, Yu D.-G. Nat. Catal. 2023; 6: 959
    • 18a Fujihara T, Xu T, Semba K, Terao J, Tsuji Y. Angew. Chem. Int. Ed. 2011; 50: 523
    • 18b Li S, Yuan W, Ma S. Angew. Chem. Int. Ed. 2011; 50: 2578
    • 18c Zhang L, Cheng J, Carry B, Hou Z. J. Am. Chem. Soc. 2012; 134: 14314
    • 18d Wang X, Nakajima M, Martin R. J. Am. Chem. Soc. 2015; 137: 8924
    • 18e Hou J, Ee A, Feng W, Xu J.-H, Zhao Y, Wu J. J. Am. Chem. Soc. 2018; 140: 5257
  • 19 Cao G.-M, Hu X.-L, Liao L.-L, Yan S.-S, Song L, Chruma JJ, Gong L, Yu D.-G. Nat. Commun. 2021; 12: 3306
    • 20a Fan X, Gong X, Ma M, Wang R, Walsh PJ. Nat. Commun. 2018; 9: 4936
    • 20b Ju T, Fu Q, Ye J.-H, Zhang Z, Liao L.-L, Yan S.-S, Tian X.-Y, Luo S.-P, Li J, Yu D.-G. Angew. Chem. Int. Ed. 2018; 57: 13897
    • 21a Zhou W.-J, Wang Z.-H, Liao L.-L, Jiang Y.-X, Cao K.-G, Ju T, Li Y, Cao G.-M, Yu D.-G. Nat. Commun. 2020; 11: 3263
    • 21b Ju T, Zhou Y.-Q, Cao K.-G, Fu Q, Ye J.-H, Sun G.-Q, Liu X.-F, Chen L, Liao L.-L, Yu D.-G. Nat. Catal. 2021; 4: 304
    • 21c Gao Y, Wang H, Chi Z, Yang L, Zhou C, Li G. CCS Chem. 2022; 4: 1565
    • 21d Yi Y, Fan Z, Xi C. Green Chem. 2022; 24: 7894
    • 21e You Y, Kanna W, Takano H, Hayashi H, Maeda S, Mita T. J. Am. Chem. Soc. 2022; 144: 3685
    • 22a Jiang Y.-X, Chen L, Ran C.-K, Song L, Zhang W, Liao L.-L, Yu D.-G. ChemSusChem 2020; 13: 6312
    • 22b Xiao H.-Z, Yu B, Yan S.-S, Zhang W, Li X.-X, Bao Y, Luo S.-P, Ye J.-H, Yu D.-G. Chin. J. Catal. 2023; 50: 222
    • 22c Liu Y, Wang Z.-H, Xue G.-H, Chen L, Yuan L.-H, Li Y.-W, Yu D.-G, Ye J.-H. Chin. Chem. Lett. 2024; 35: 109138
  • 23 Liao L.-L, Wang Z.-H, Cao K.-G, Sun G.-Q, Zhang W, Ran C.-K, Li Y, Chen L, Cao G.-M, Yu D.-G. J. Am. Chem. Soc. 2022; 144: 2062
    • 24a Baumann H, Bühler M, Fochem H, Hirsinger F, Zoebelein H, Falbe J. Angew. Chem. Int. Ed. 1988; 27: 41
    • 24b Corma A, Iborra S, Velty A. Chem. Rev. 2007; 107: 2411
    • 24c Köckritz A, Blumenstein M, Martin A. Eur. J. Lipid Sci. Technol. 2010; 112: 58
    • 25a Chen F, Wang T, Jiao N. Chem. Rev. 2014; 114: 8613
    • 25b Souillart L, Cramer N. Chem. Rev. 2015; 115: 9410
    • 25c Liang Y.-F, Bilal M, Tang L.-Y, Wang T.-Z, Guan Y.-Q, Cheng Z, Zhu M, Wei J, Jiao N. Chem. Rev. 2023; 123: 12313
    • 26a Buchi G, Ayer DE. J. Am. Chem. Soc. 1956; 78: 689
    • 26b Caron S, Dugger RW, Ruggeri SG, Ragan JA, Ripin DH. B. Chem. Rev. 2006; 106: 2943
    • 26c Van Ornum SG, Champeau RM, Pariza R. Chem. Rev. 2006; 106: 2990
    • 26d Rajagopalan A, Lara M, Kroutil W. Adv. Synth. Catal. 2013; 355: 3321
    • 26e Spannring P, Bruijnincx PC. A, Weckhuysen BM, Klein Gebbink RJ. M. Catal. Sci. Technol. 2014; 4: 2182
    • 26f Cousin T, Chatel G, Kardos N, Andrioletti B, Draye M. Catal. Sci. Technol. 2019; 9: 5256
    • 28a Deng Y, Wei X.-J, Wang H, Sun Y, Noël T, Wang X. Angew. Chem. Int. Ed. 2017; 56: 832
    • 28b Urgoitia G, SanMartin R, Herrero MT, Domínguez E. ACS Catal. 2017; 7: 3050
  • 29 Wang H, Toh RW, Shi X, Wang T, Cong X, Wu J. Nat. Commun. 2020; 11: 4462
  • 30 Huang Z, Guan R, Shanmugam M, Bennett EL, Robertson CM, Brookfield A, McInnes EJ. L, Xiao J. J. Am. Chem. Soc. 2021; 143: 10005
    • 31a Ruffoni A, Hampton C, Simonetti M, Leonori D. Nature 2022; 610: 81
    • 31b Wise DE, Gogarnoiu ES, Duke AD, Paolillo JM, Vacala TL, Hussain WA, Parasram M. J. Am. Chem. Soc. 2022; 144: 15437
  • 32 Yuan P.-F, Yang Z, Zhang S.-S, Zhu C.-M, Yang X.-L, Meng Q.-Y. Angew. Chem. Int. Ed. 2024; 63: e202313030
  • 33 Yu X.-Y, Chen J.-R, Xiao W.-J. Chem. Rev. 2021; 121: 506
  • 34 Jiang H, Studer A. Chem. Soc. Rev. 2020; 49: 1790
    • 35a McNally A, Prier CK, MacMillan DW. C. Science 2011; 334: 1114
    • 35b Miyake Y, Nakajima K, Nishibayashi Y. J. Am. Chem. Soc. 2012; 134: 3338
    • 35c Ruiz Espelt L, McPherson IS, Wiensch EM, Yoon TP. J. Am. Chem. Soc. 2015; 137: 2452
    • 35d Zheng S, Chen Z, Hu Y, Xi X, Liao Z, Li W, Yuan W. Angew. Chem. Int. Ed. 2020; 59: 17910
  • 36 Speckmeier E, Fischer TG, Zeitler K. J. Am. Chem. Soc. 2018; 140: 15353
  • 37 Singh PP, Srivastava V. Org. Biomol. Chem. 2021; 19: 313
  • 38 Griller D, Ingold KU. Acc. Chem. Res. 1980; 13: 317
    • 39a Aycock RA, Pratt CJ, Jui NT. ACS Catal. 2018; 8: 9115
    • 39b Leng L, Fu Y, Liu P, Ready JM. J. Am. Chem. Soc. 2020; 142: 11972
    • 39c Shen Y, Funez-Ardoiz I, Schoenebeck F, Rovis T. J. Am. Chem. Soc. 2021; 143: 18952
    • 39d Wu Z, Gockel SN, Hull KL. Nat. Commun. 2021; 12: 5956
    • 40a Hou J, Ee A, Cao H, Ong H.-W, Xu J.-H, Wu J. Angew. Chem. Int. Ed. 2018; 57: 17220
    • 40b Zhang B, Yi Y, Wu Z.-Q, Chen C, Xi C. Green Chem. 2020; 22: 5961
    • 40c Hahm H, Kim J, Ryoo JY, Han MS, Hong S. Org. Biomol. Chem. 2021; 19: 6301